A Parallel Computing Approach to Gene Expression and Phenotype Correlation for Identifying Retinitis Pigmentosa Modifiers in Drosophila
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Datasets
2.2. Correlation Analysis
2.3. Parallel Computation in R
2.4. The Computational Approach
Algorithm 1. Main Algorithm |
Input: Aes—Average eye sizes Expr—Expression-level matrix low_quantile—Bottom quantile of eye sizes high_quantile—Top quantile of eye sizes C—Correlation threshold value num_process—Number of parallel processes Output: List of candidate genes |
Begin Filterout strains in Expr with only one replicate. Filterout strains in Expr with no matching values in Aes. selSizes ⟵ eye sizes in Aes less than low_quantile or greater than high_quantile values extreme_strains ⟵ strains in Aes corresponding to selSizes rep_combs ⟵ Algorithm2 (extreme_strains) best_rep_comb ⟵ Algorithm3 (selSizes, Expr, rep_combs, C, num_ process) candidate_genes ⟵ Algorithm4 (SelSizes, Expr, rep_combs, best_rep_comb, C) Print candidate_genes, their correlation coefficients, and p-values. End |
Algorithm 2. Generate replicate combinations |
Input: selStrain—Selected extreme strains. Output: replicate_comb—Replicate combinations matrix. |
Begin N ⟵ Length(selStrain) for i ⟵ 1 to 2N do binary ⟵ DecimalToBinary(i) for every binary digit d at position j in binary do if d is 0 then replicate_comb[i] ⟵ first replicate of strain j else replicate_comb[i] ⟵ second replicate of strain j return replicate_comb End |
Algorithm 3. Find the best replicate combination |
Input: selSizes—Average eye sizes of selected strains Expr—Expression level matrix replicate_comb—Replicate combinations matrix C—Correlation threshold value num_process—Number of parallel processes Output: bestCombination—Best replicate combination |
Begin Create a parallel team with num_process processes. Let scoreVec and combVec be empty vectors. foreach replicate combination c[i] in replicate_comb do for every gene j do Score ⟵ 0 selExprs[j] ⟵ expression levels of j in the selected combination c[i] temp[j] ⟵ correlation value between selExprs[j] and selSizes if temp[j] < -C OR temp[j] > C then Score ⟵ Score + 1 end end Append Score to ScoreVec Append c[i] to combVec end Terminate the parallel session. bestCombination ⟵ Replicate combination in combVec associated with Max(ScoreVec) return bestCombination End |
Algorithm 4. Find candidate genes |
Input: selSizes—Average eye sizes of selected strains Expr—Expression level matrix best_rep_comb—Best replicate combination C—Correlation threshold value Output: sorted_genes—List of candidate genes with their correlation coefficients and p-values |
Begin Let m be the number of genes in Expr Let Results be a list of length m foreach gene j do Results[j] ⟵ correlation coefficient and p-values of selSize and gene expression levels of j for best_rep_comb in Expr end Filterout genes in Results’ with p-values less than 0.05 Filterout genes in Results’ with correlation coefficients not in the range [C, 1] nor [−1, -C] sorted_genes ⟵ Sort Results’ in descending order based on the absolute values of correlation s coefficients return sorted_genes End |
3. Results
3.1. Experimental Setup
3.1.1. Datasets
3.1.2. Quantile Thresholds
3.1.3. Hardware & Software Specifications
3.2. Execution Time Analysis
3.3. Suspected Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Massouras, A.; Inoue, Y.; Peiffer, J.; Ràmia, M.; Tarone, A.M.; Turlapati, L.; Zichner, T.; Zhu, D.; Lyman, R.F.; et al. Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res. 2014, 24, 1193–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay, T.F.C.; Richards, S.; Stone, E.A.; Barbadilla, A.; Ayroles, J.F.; Zhu, D.; Casillas, S.; Han, Y.; Magwire, M.M.; Cridland, J.M.; et al. The Drosophila melanogaster Genetic Reference Panel. Nature 2012, 482, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, C.Y.; Kelsey, K.J.P.; Wolfner, M.F.; Clark, A.G. Candidate genetic modifiers of retinitis pigmentosa identified by exploiting natural variation in Drosophila. Hum. Mol. Genet. 2016, 25, 651–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 13. [Google Scholar] [CrossRef] [Green Version]
- Karademir, D.; Todorova, V.; Ebner, L.J.A.; Samardzija, M.; Grimm, C. Single-cell RNA sequencing of the retina in a model of retinitis pigmentosa reveals early responses to degeneration in rods and cones. BMC Biol. 2022, 20, 86. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, W.; Xu, N.; Tao, T.; Tang, X.; Huang, L. RNA-Seq Analysis for Exploring the Pathogenesis of Retinitis Pigmentosa in P23H Knock-In Mice. Ophthalmic Res. 2021, 64, 798–810. [Google Scholar] [CrossRef]
- Robinson, M.D.; Smyth, G.K. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 2007, 23, 2881–2887. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, T.J.; Kelly, K.A. baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinform. 2010, 11, 422. [Google Scholar] [CrossRef] [Green Version]
- Leng, N.; Dawson, J.A.; Thomson, J.A.; Ruotti, V.; Rissman, A.I.; Smits, B.M.G.; Haag, J.D.; Gould, M.N.; Stewart, R.M.; Kendziorski, C. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 2013, 29, 1035–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarazona, S.; García-Alcalde, F.; Dopazo, J.; Ferrer, A.; Conesa, A. Differential expression in RNA-seq: A matter of depth. Genome Res. 2011, 21, 2213–2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Tibshirani, R. Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data. Stat. Methods Med. Res. 2013, 22, 519–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soneson, C.; Delorenzi, M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinform. 2013, 14, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, P.; Pardee, A.B. Analysing differential gene expression in cancer. Nat. Rev. Cancer 2003, 3, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Esteban, R.; Jiang, X. Differential gene expression in disease: A comparison between high-throughput studies and the literature. BMC Med. Genom. 2017, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Amstutz, J.; Khalifa, A.; Palu, R.; Jahan, K. Cluster-Based Analysis of Retinitis Pigmentosa Modifiers Using Drosophila Eye Size and Gene Expression Data. Genes 2022, 13, 386. [Google Scholar] [CrossRef]
- Nguyen, T.; Khalifa, A.; Palu, R. Identifying Genes Related to Retinitis Pigmentosa in Drosophila melanogaster Using Eye Size and Gene Expression Data. BioMedInformatics 2022, 2, 625–636. [Google Scholar] [CrossRef]
- Huang, W.; Carbone, M.A.; Magwire, M.M.; Peiffer, J.A.; Lyman, R.F.; Stone, E.A.; Anholt, R.R.H.; Mackay, T.F.C. Genetic basis of transcriptome diversity in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2015, 112, E6010–E6019. [Google Scholar] [CrossRef] [Green Version]
- Palu, R.A.S.; Ong, E.; Stevens, K.; Chung, S.; Owings, K.G.; Goodman, A.G.; Chow, C.Y. Natural Genetic Variation Screen in Drosophila Identifies Wnt Signaling, Mitochondrial Metabolism, and Redox Homeostasis Genes as Modifiers of Apoptosis. G3 Genes Genomes Genet. 2019, 9, 3995–4005. [Google Scholar] [CrossRef] [Green Version]
- Posnien, N.; Hopfen, C.; Hilbrant, M.; Ramos-Womack, M.; Murat, S.; Schönauer, A.; Herbert, S.L.; Nunes, M.D.S.; Arif, S.; Breuker, C.J.; et al. Evolution of eye morphology and rhodopsin expression in the Drosophila melanogaster species subgroup. PLoS ONE 2012, 7, e37346. [Google Scholar] [CrossRef]
- Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weston, S.; Calaway, R. Getting Started with doParallel and Foreach. 2022. Available online: https://CRAN.R-project.org/package=doParallel (accessed on 6 January 2023).
Gene | Expression Level | |||
---|---|---|---|---|
RAL021:1 | RAL021:2 | RAL026:1 | RAL026:2 | |
FBgn0000014 | 4.244723137 | 4.216353088 | 4.028685457 | 3.965513774 |
FBgn0000015 | 3.234859699 | 3.199773952 | 3.266073855 | 3.514853684 |
FBgn0000017 | 8.066864662 | 7.962031505 | 8.016965853 | 8.081375654 |
FBgn0000018 | 5.317033088 | 5.268665083 | 5.583749674 | 4.949218486 |
FBgn0000022 | 3.000683083 | 3.000127343 | 4.033542617 | 3.364429304 |
FBgn0000024 | 6.120670813 | 6.023183171 | 6.363472661 | 6.83930746 |
FBgn0000028 | 4.101309578 | 4.050933404 | 4.581349626 | 4.276622648 |
FBgn0000032 | 7.460913282 | 7.68689799 | 7.782455553 | 7.635495636 |
FBgn0000036 | 3.988090417 | 3.789139103 | 3.979189512 | 3.95396714 |
FBgn0000037 | 4.475747359 | 4.323271618 | 4.457239171 | 4.378994365 |
… | … | … | … | … |
XLOC_006439 | 2.414951288 | 2.612959863 | 3.717652528 | 2.090561202 |
Strain ID | Average Eye Size (Pixels × 103) |
---|---|
RAL021 | 19,976.8 |
RAL026 | 21,473.2 |
RAL038 | 19,981.5 |
RAL040 | 16,992.9 |
RAL042 | 21,481.4 |
… | … |
RAL913 | 19,488.5 |
Dataset | Filtered Strains | Mean | Median | Minimum | Maximum | Quartile | |
---|---|---|---|---|---|---|---|
1st | 3rd | ||||||
Rh1G69D | 170 | 21,540.20 | 21,561.65 | 14,254.60 | 27,349.11 | 19,995.88 | 23,199.63 |
rpr | 171 | 12,666.09 | 12,486.20 | 79,57.20 | 16,883.50 | 11,620.60 | 13,906.10 |
p53 | 172 | 14,244.73 | 14,166.00 | 10,542.20 | 17834.60 | 13,160.12 | 15,278.90 |
Dataset | Number of Selected Lines | Quantile (%) | |
---|---|---|---|
Bottom | Top | ||
Rh1G69D | 16 | 20.90 | 87.20 |
18 | 21.00 | 87.00 | |
20 | 21.50 | 85.30 | |
22 | 22.10 | 84.60 | |
rpr | 16 | 21.10 | 83.80 |
18 | 23.80 | 80.80 | |
20 | 25.10 | 80.40 | |
22 | 25.30 | 79.90 | |
p53 | 16 | 17.80 | 83.68 |
18 | 18.90 | 83.60 | |
20 | 19.10 | 82.20 | |
22 | 19.20 | 81.68 |
Nguyen’s | Ours | ||||
---|---|---|---|---|---|
Serial | 2 Processes | 4 Processes | 8 Processes | ||
Algorithm 1 | 3.763 | 21.210 | 25.710 | 23.130 | 24.810 |
Algorithm 2 | 862.640 | 901.010 | 322.110 | 215.600 | 166.960 |
Algorithm 3 | 71.342 | 76.362 | 23.960 | 17.868 | 17.562 |
No. of Selected Lines | Gene ID | Correlation Coefficient | p-Value |
---|---|---|---|
16 | FBgn0027378 | −0.863661390 | 1.624926332 × 10−5 |
FBgn0263005 | −0.856324086 | 2.297889577 × 10−5 | |
XLOC_006268 | −0.849992594 | 3.053251949 × 10−5 | |
FBgn0032847 | −0.840543849 | 4.560179069 × 10−5 | |
FBgn0033782 | 0.840068819 | 4.649931586 × 10−5 | |
FBgn0036761 | −0.834562369 | 5.802852891 x 10−5 | |
FBgn0037531 | −0.828535797 | 7.329098346 × 10−5 | |
FBgn0086679 | −0.826073369 | 8.042371477 × 10−5 | |
FBgn0031233 | −0.814773350 | 1.210237900 × 10−4 | |
FBgn0038639 | −0.810804945 | 1.388117979 × 10−4 | |
18 | FBgn0085376 | 0.859283205 | 4.923670750 × 10−6 |
FBgn0033782 | 0.854529969 | 6.322511262 × 10−6 | |
FBgn0037531 | −0.850683118 | 7.692063225 × 10−6 | |
FBgn0003345 | 0.849498533 | 8.161927414 × 10−6 | |
FBgn0036299 | −0.824116242 | 2.609375328 × 10−5 | |
FBgn0086679 | −0.820352399 | 3.052250605 × 10−5 | |
FBgn0032847 | −0.809207602 | 4.758311930 × 10−5 | |
FBgn0037016 | 0.804435051 | 5.705515305 × 10−5 | |
FBgn0263005 | −0.799150447 | 6.936945025 × 10−5 | |
FBgn0263659 | 0.798357906 | 7.139778718 × 10−5 | |
20 | FBgn0032847 | −0.835162086 | 4.614128240 × 10−6 |
FBgn0086679 | −0.810201591 | 1.489680678 × 10−5 | |
XLOC_004892 | 0.808596485 | 1.596926917 × 10−5 | |
FBgn0037531 | −0.798402859 | 2.447648614 × 10−5 | |
FBgn0037770 | −0.795138465 | 2.792299682 × 10−5 | |
FBgn0033087 | −0.782129177 | 4.616635661 × 10−5 | |
FBgn0038039 | −0.777530252 | 5.470964221 × 10−5 | |
FBgn0261703 | 0.777148268 | 5.547684002 × 10−5 | |
FBgn0263602 | −0.776940029 | 5.589897080 × 10−5 | |
FBgn0023513 | −0.77665287 | 5.648562369 × 10−5 | |
22 | FBgn0032847 | −0.819701175 | 3.041416193 × 10−6 |
FBgn0003345 | 0.806371734 | 5.849733373 × 10−6 | |
FBgn0039125 | −0.798479606 | 8.420737122 × 10−6 | |
FBgn0027378 | −0.798116202 | 8.559914937 × 10−6 | |
FBgn0037770 | −0.775234661 | 2.259984672 × 10−5 | |
FBgn0036299 | −0.773718232 | 2.400671440 × 10−5 | |
FBgn0038039 | −0.766653185 | 3.162045710 × 10−5 | |
FBgn0030817 | −0.759197474 | 4.186542502 × 10−5 | |
FBgn0033087 | −0.758610329 | 4.278306102 × 10−5 | |
FBgn0263602 | −0.757552951 | 4.447992560 × 10−5 |
No. of Selected Lines | Gene ID | Correlation Coefficient | p-Value |
---|---|---|---|
16 | FBgn0053017 | 0.878155178 | 7.701469269 × 10−6 |
FBgn0032225 | 0.864824355 | 1.535297878 × 10−5 | |
FBgn0033244 | −0.863862383 | 1.609129485 × 10−5 | |
FBgn0015513 | −0.863578519 | 1.631477307 × 10−5 | |
FBgn0027601 | −0.863380084 | 1.647253890 × 10−5 | |
FBgn0004620 | 0.859876472 | 1.947654735 × 10−5 | |
XLOC_003703 | 0.857112086 | 2.215964129 × 10−5 | |
FBgn0052451 | −0.854030715 | 2.550919501 × 10−5 | |
FBgn0030394 | 0.853756622 | 2.582664724 × 10−5 | |
FBgn0015024 | −0.853296712 | 2.636675031 × 10−5 | |
18 | FBgn0030394 | 0.863043231 | 4.013975720 × 10−6 |
FBgn0052451 | −0.861824973 | 4.291403231 × 10−6 | |
FBgn0053017 | 0.857064474 | 5.539380529 × 10−6 | |
FBgn0015513 | −0.854016815 | 6.492125538 × 10−6 | |
XLOC_001754 | 0.85284074 | 6.895646685 × 10−6 | |
FBgn0027601 | −0.851538255 | 7.367464694 × 10−6 | |
FBgn0032225 | 0.848190573 | 8.709105665 × 10−6 | |
FBgn0040508 | 0.846060487 | 9.667524618 × 10−6 | |
FBgn0051523 | −0.839435144 | 1.324811250 × 10−5 | |
XLOC_003703 | 0.838478248 | 1.384887686 × 10−5 | |
20 | FBgn0052451 | −0.865408608 | 8.358927794 × 10−7 |
FBgn0027601 | −0.856270053 | 1.457998848 × 10−6 | |
XLOC_003703 | 0.846002475 | 2.608233863 × 10−6 | |
FBgn0037223 | 0.842028538 | 3.230636630 × 10−6 | |
FBgn0053017 | 0.841496599 | 3.323055691 × 10−6 | |
FBgn0033244 | −0.834443888 | 4.784948638 × 10−6 | |
FBgn0051523 | −0.834340071 | 4.810090828 × 10−6 | |
XLOC_004120 | 0.832821352 | 5.191263979 × 10−6 | |
XLOC_006378 | 0.832584454 | 5.253030551 × 10−6 | |
FBgn0039491 | 0.828453174 | 6.437918905 × 10−6 | |
22 | FBgn0027601 | −0.848794066 | 5.948318658 × 10−7 |
FBgn0053017 | 0.828428119 | 1.924641707 × 10−6 | |
FBgn0004620 | 0.819129408 | 3.131318980 × 10−6 | |
FBgn0015513 | −0.816721873 | 3.536085022 × 10−6 | |
FBgn0036874 | 0.815971236 | 3.671371942 × 10−6 | |
FBgn0039491 | 0.815006786 | 3.851872618 × 10−6 | |
FBgn0033244 | −0.812433525 | 4.372265832 × 10−6 | |
FBgn0036017 | 0.80726159 | 5.608563439 × 10−6 | |
FBgn0085692 | 0.806424546 | 5.835169750 × 10−6 | |
XLOC_003128 | 0.804285096 | 6.451350215 × 10−6 |
No. of Selected Lines | Gene ID | Correlation Coefficient | p-Value |
---|---|---|---|
16 | FBgn0263110 | 0.914150185 | 7.326821639 × 10−7 |
FBgn0030089 | 0.912212484 | 8.520806952 × 10−7 | |
FBgn0051804 | −0.893134917 | 3.203841392 × 10−6 | |
XLOC_002940 | −0.880664278 | 6.703825055 × 10−6 | |
FBgn0262148 | −0.84019034 | 4.626832053 × 10−5 | |
FBgn0004373 | 0.824802374 | 8.432604659 × 10−5 | |
FBgn0029952 | −0.824030001 | 8.677364856 × 10−5 | |
XLOC_006034 | −0.816964908 | 1.120425958 × 10−4 | |
FBgn0034624 | −0.813349043 | 1.271757728 × 10−4 | |
FBgn0026369 | 0.809052147 | 1.473328296 × 10−4 | |
18 | FBgn0030089 | 0.90872731 | 1.812918682 × 10−7 |
FBgn0051804 | −0.884756312 | 1.083361127 × 10−6 | |
XLOC_002940 | −0.857875241 | 5.307141864 × 10−6 | |
FBgn0004373 | 0.823245148 | 2.706658753 × 10−5 | |
FBgn0263598 | 0.820901298 | 2.983927843 × 10−5 | |
FBgn0085478 | 0.813059623 | 4.094743159 × 10−5 | |
FBgn0005632 | 0.811169207 | 4.409799798 × 10−5 | |
XLOC_001981 | −0.810258107 | 4.568867256 × 10−5 | |
FBgn0029952 | −0.808005811 | 4.983200012 × 10−5 | |
FBgn0015024 | 0.800553196 | 6.589932229 × 10−5 | |
20 | XLOC_002940 | −0.838696327 | 3.848574574 × 10−6 |
FBgn0004373 | 0.830822887 | 5.732735463 × 10−6 | |
FBgn0050039 | −0.814340058 | 1.241477643 × 10−5 | |
FBgn0259146 | −0.810730528 | 1.455735618 × 10−5 | |
FBgn0005649 | 0.805892929 | 1.792731166 × 10−5 | |
FBgn0037770 | 0.799502932 | 2.340117744 × 10−5 | |
FBgn0027338 | 0.799283244 | 2.361258995 × 10−5 | |
FBgn0037327 | 0.792106903 | 3.149179899 × 10−5 | |
XLOC_003332 | −0.790428741 | 3.363187698 × 10−5 | |
FBgn0085478 | 0.789154503 | 3.533971171 × 10−5 | |
22 | XLOC_002940 | −0.857556268 | 3.401980564 × 10−7 |
FBgn0030089 | 0.84421251 | 7.858326004 × 10−7 | |
FBgn0085478 | 0.802630148 | 6.966511250 × 10−6 | |
FBgn0029976 | 0.799946333 | 7.878992278 × 10−6 | |
FBgn0005632 | 0.799262002 | 8.127819248 × 10−6 | |
FBgn0004373 | 0.789236473 | 1.265143068 × 10−5 | |
FBgn0029952 | −0.788090936 | 1.328762771 × 10−5 | |
FBgn0263598 | 0.786198336 | 1.440028907 × 10−5 | |
FBgn0021760 | 0.78617631 | 1.441370482 × 10−5 | |
XLOC_004713 | −0.784049252 | 1.576201243 × 10−5 |
Gene ID | Shared Datasets/Lines | Gene Symbol | Gene Name | Human Ortho. | Link to RP |
---|---|---|---|---|---|
FBgn0032847 | Rh1G69D: 16, 18, 20, 22 | CG10756 | TBP-associated factor 13 | TAF13; SUPT3H | Unknown |
FBgn0037531 | Rh1G69D: 16, 18, 20 | CG10445 | N/A | TTF2; HLTF | Unknown |
FBgn0086679 | Rh1G69D: 16, 18, 20 | CG9770 | pink | HPS5; TECPR2 | Eye expression and primary function. |
FBgn0027601 | rpr: 16, 18, 20, 22 | CG9009 | pudgy | ACSF2/ACSF3 | Fatty acid metabolism influences mitochondrial function and cell death. |
FBgn0053017 | rpr: 16, 18, 20, 22 | CG33017 | N/A | GPATCH8 | Unknown |
FBgn0052451 | rpr: 16, 18, 20 | CG32451 | secretory pathway calcium atpase | ATP2C1/ATP2C2 | Calcium influx can be a trigger for apoptosis. Loss in humans is associated with various diseases, including some atrophy/degeneration. |
XLOC_003703 | rpr: 16, 18, 20 | N/A | N/A | N/A | Unknown |
FBgn0015513 | rpr: 16, 18, 22 | CG10379 | myoblast city | DOCK1/DOCK2/ DOCK5 | Associated in (DOCK2) with immunodeficiency 40 (OMIM 616433). More distant orthologue (DOCK3) associated with neurodevelopmental disorder with autophagy and degenerative axons. |
FBgn0033244 | rpr: 16, 20, 22 | CG8726 | N/A | PXK | Loss in humans associated with susceptibility to lupus. |
FBgn0004373 | p53: 16, 18, 20, 22 | CG7004 | four-wheel drive | PI4KB | Connection to deafness and to insulin signaling in human/rodents. |
XLOC_002940 | p53: 16, 18, 20, 22 | N/A | N/A | N/A | Unknown |
FBgn0030089 | p53: 16, 18, 22 | CG9113 | adaptor protein complex 1, gamma subunit | AP1G1/AP1G2 | Associated with USRISR, a neurodevelopmental disorder (AP1G1) (OMIM 619548). |
FBgn0029952 | p53: 16, 18, 22 | CG12689 | N/A | N/A | Unknown |
FBgn0085478 | p53: 18, 20, 22 | CG34449 | zinc finger DHHC-type containing 8 | ZDHHC5/ ZDHHC8 | Linked to learning and memory (neuronal function) in mouse models. |
FBgn0037770 | Rh1G69D: 20, 22 p53: 20 | CG5358 | arginine methyltransferase 4 | CARM1; METTL27/7B/7A; PRMT9/3/7/6/8/2/1; NDUFAF5; ALKBH8; BUD23; ATPSCKMT; GSTCD; TRMT9B; ANTKMT | Unknown |
FBgn0015024 | rpr: 16 p53: 18 | CG2028 | casein kinase Iα | Hsap\CSNK1A1, Hsap\CSNK1A1L | a biomarker for Alzheimer’s Disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metah, C.; Khalifa, A.; Palu, R. A Parallel Computing Approach to Gene Expression and Phenotype Correlation for Identifying Retinitis Pigmentosa Modifiers in Drosophila. Computation 2023, 11, 118. https://doi.org/10.3390/computation11060118
Metah C, Khalifa A, Palu R. A Parallel Computing Approach to Gene Expression and Phenotype Correlation for Identifying Retinitis Pigmentosa Modifiers in Drosophila. Computation. 2023; 11(6):118. https://doi.org/10.3390/computation11060118
Chicago/Turabian StyleMetah, Chawin, Amal Khalifa, and Rebecca Palu. 2023. "A Parallel Computing Approach to Gene Expression and Phenotype Correlation for Identifying Retinitis Pigmentosa Modifiers in Drosophila" Computation 11, no. 6: 118. https://doi.org/10.3390/computation11060118
APA StyleMetah, C., Khalifa, A., & Palu, R. (2023). A Parallel Computing Approach to Gene Expression and Phenotype Correlation for Identifying Retinitis Pigmentosa Modifiers in Drosophila. Computation, 11(6), 118. https://doi.org/10.3390/computation11060118