Coarse-Grained Modeling of the SARS-CoV-2 Spike Glycoprotein by Physics-Informed Machine Learning
Abstract
:1. Introduction
- An innovative application of supervised ML is proposed to derive a physics-informed CG model.
- The supervised ML is combined with molecular dynamics towards greater efficiency, achieving a speed-up of CGMD simulations of 40,000 over the conventional AAMD simulations while retaining structural accuracy.
- The greater efficiency enhances the timeliness of the research in producing long-term simulations and blazes a path for new applications and further investigation, i.e., protein binding and prediction of environmental changes.
2. Materials and Methods
2.1. Coarse-Grained Structure
2.2. Coarse-Grained Force Field
2.3. Physics-Informed ML Model
2.4. Validation and Verification
3. Results
3.1. Accuracy Analysis
3.2. Speed Analysis
3.3. Solvation Application
4. Discussion
- The approach demonstrates the superiority of the supervised ML in deriving a CG model.
- In combining ML with molecular dynamics, our approach immensely accelerates simulations compared with the conventional AA models while maintaining stability and structural accuracy.
- The gained efficiency can elucidate protein mechanisms and render a great impact on future simulation studies by relieving the ongoing concerns about timeliness.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. All-Atomic Simulations
Appendix A.2. Dihedral Potential Term
Appendix A.3. Parameter Initialization
Appendix A.4. Parameter Learning
Appendix A.5. ML Refinement on LJ Terms
Appendix A.6. RMSFs for Bonded Interactions
References
- Moore, T.C.; Iacovella, C.R.; McCabe, C. Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion. J. Chem. Phys. 2014, 140, 224104. [Google Scholar] [CrossRef] [PubMed]
- Leong, T.; Voleti, C.; Peng, Z. Coarse-Grained Modeling of Coronavirus Spike Proteins and ACE2 Receptors. Front. Phys. 2021, 9, 680983. [Google Scholar] [CrossRef]
- Yu, A.; Pak, A.J.; He, P.; Monje-Galvan, V.; Casalino, L.; Gaieb, Z.; Dommer, A.C.; Amaro, R.E.; Voth, G.A. A multiscale coarse-grained model of the SARS-CoV-2 virion. Biophys. J. 2021, 120, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Izvekov, S.; Voth, G.A. Multiscale coarse graining of liquid-state systems. J. Chem. Phys. 2005, 123, 134105. [Google Scholar] [CrossRef] [PubMed]
- Izvekov, S.; Voth, G.A. A Multiscale Coarse-Graining Method for Biomolecular Systems. J. Phys. Chem. B 2005, 109, 2469–2473. [Google Scholar] [CrossRef] [PubMed]
- Voth, G.A. Coarse-Graining of Condensed Phase and Biomolecular Systems; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Liang, D.; Zhang, Z.; Rafailovich, M.; Simon, M.; Deng, Y.; Zhang, P. Beyond the Scales: A physics-informed machine learning approach for more efficient modeling of SARS-CoV-2 spike glycoprotein. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, P.; Wang, P.; Sheriff, J.; Bluestein, D.; Deng, Y. Rapid analysis of streaming platelet images by semi-unsupervised learning. Comput. Med. Imaging Graph. 2021, 89, 101895. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, P.; Han, C.; Cong, G.; Yang, C.-C.; Deng, Y. AI Meets HPC: Learning the Cell Motion in Biofluids. In Proceedings of the Supercomputing Conference 2020 (SC20), Atlanta, GA, USA, 16–19 November 2020. Research Posters Track. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, P.; Han, C.; Cong, G.; Yang, C.-C.; Deng, Y. Online Machine Learning for Accelerating Molecular Dynamics Modeling of Cells. Front. Mol. Biosci. 2022, 8, 812248. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, J.; Wang, P.; Zhang, P.; Zhang, Z.; Deng, Y.; Bluestein, D. In Vitro Measurements of Shear-Mediated Platelet Adhesion Kinematics as Analyzed through Machine Learning. Ann. Biomed. Eng. 2021, 49, 3452–3464. [Google Scholar] [CrossRef]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [Google Scholar] [CrossRef]
- Niu, Z.; Hasegawa, K.; Deng, Y.; Zhang, Z.; Rafailovich, M.; Simon, M.; Zhang, P. Modeling of the thermal properties of SARS-CoV-2 S-protein. Front. Mol. Biosci. 2022, 9, 953064. [Google Scholar] [CrossRef]
- Song, M.; Zhang, P.; Han, C.; Zhang, Z.; Deng, Y. Long-time simulation of temperature varying conformations of COVID-19 spike glycoprotein on IBM supercomputers. In Proceedings of the Supercomputing Conference 2020 (SC20), Atlanta, GA, USA, 16–19 November 2020. Research Posters Track. [Google Scholar]
- Liang, D.; Song, M.; Niu, Z.; Zhang, P.; Rafailovich, M.; Deng, Y. Supervised machine learning approach to molecular dynamics forecast of SARS-CoV-2 spike glycoproteins at varying temperatures. MRS Adv. 2021, 6, 362–367. [Google Scholar] [CrossRef]
- Lyman, E.; Pfaendtner, J.; Voth, G.A. Systematic Multiscale Parameterization of Heterogeneous Elastic Network Models of Proteins. Biophys. J. 2008, 95, 4183–4192. [Google Scholar] [CrossRef]
- Pak, A.J.; Yu, A.; Ke, Z.; Briggs, J.A.G.; Voth, G.A. Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core. Nat. Commun. 2022, 13, 1002. [Google Scholar] [CrossRef]
- Wang, J.; Olsson, S.; Wehmeyer, C.; Pérez, A.; Charron, N.E.; de Fabritiis, G.; Noé, F.; Clementi, C. Machine Learning of Coarse-Grained Molecular Dynamics Force Fields. ACS Cent. Sci. 2019, 5, 755–767. [Google Scholar] [CrossRef]
- Husic, B.E.; Charron, N.E.; Lemm, D.; Wang, J.; Pérez, A.; Majewski, M.; Krämer, A.; Chen, Y.; Olsson, S.; de Fabritiis, G.; et al. Coarse graining molecular dynamics with graph neural networks. J. Chem. Phys. 2020, 153, 194101. [Google Scholar] [CrossRef]
- Doerr, S.; Majewski, M.; Pérez, A.; Krämer, A.; Clementi, C.; Noe, F.; Giorgino, T.; De Fabritiis, G. TorchMD: A Deep Learning Framework for Molecular Simulations. J. Chem. Theory Comput. 2021, 17, 2355–2363. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Arkhipov, A.; Freddolino, P.L.; Schulten, K. Stability and Dynamics of Virus Capsids Described by Coarse-Grained Modeling. Structure 2006, 14, 1767–1777. [Google Scholar] [CrossRef]
- Ayton, G.S.; Noid, W.G.; Voth, G.A. Multiscale modeling of biomolecular systems: In serial and in parallel. Curr. Opin. Struct. Biol. 2007, 17, 192–198. [Google Scholar] [CrossRef]
- Reith, D.; Pütz, M.; Müller-Plathe, F. Deriving effective mesoscale potentials from atomistic simulations: Mesoscale Potentials from Atomistic Simulations. J. Comput. Chem. 2003, 24, 1624–1636. [Google Scholar] [CrossRef]
- Agrawal, V.; Arya, G.; Oswald, J. Simultaneous Iterative Boltzmann Inversion for Coarse-Graining of Polyurea. Macromolecules 2014, 47, 3378–3389. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Arkhipov, A.; Yin, Y.; Schulten, K. Four-Scale Description of Membrane Sculpting by BAR Domains. Biophys. J. 2008, 95, 2806–2821. [Google Scholar] [CrossRef]
- Noid, W.G.; Chu, J.-W.; Ayton, G.S.; Krishna, V.; Izvekov, S.; Voth, G.A.; Das, A.; Andersen, H.C. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 2008, 128, 244114. [Google Scholar] [CrossRef]
- Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; de Vries, A.H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [Google Scholar] [CrossRef]
- Spearman Rank Correlation Coefficient. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 502–505. [CrossRef]
- Zhou, J.; Thorpe, I.F.; Izvekov, S.; Voth, G.A. Coarse-Grained Peptide Modeling Using a Systematic Multiscale Approach. Biophys. J. 2007, 92, 4289–4303. [Google Scholar] [CrossRef]
- Huang, J.; MacKerell, A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef] [Green Version]
AA Model | CG Model | |
---|---|---|
Atoms | 22,815 (45,153 w/hydrogens) | 60 |
Bonds | 23,385 | 81 |
Angles | 31,887 | 159 |
Dihedrals | 37,872 | 231 |
Simulations | Time Step Size | Total Steps | Simulated Time | Simulating Time | Simulation Speed |
---|---|---|---|---|---|
AAMD | 1 fs | 100,000 | 0.1 ns | 35,557 s | 0.243 ns/day |
CGMD | 10 fs | 500,000,000 | 5 μs | 45,318 s | 9532.6 ns/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Zhang, Z.; Rafailovich, M.; Simon, M.; Deng, Y.; Zhang, P. Coarse-Grained Modeling of the SARS-CoV-2 Spike Glycoprotein by Physics-Informed Machine Learning. Computation 2023, 11, 24. https://doi.org/10.3390/computation11020024
Liang D, Zhang Z, Rafailovich M, Simon M, Deng Y, Zhang P. Coarse-Grained Modeling of the SARS-CoV-2 Spike Glycoprotein by Physics-Informed Machine Learning. Computation. 2023; 11(2):24. https://doi.org/10.3390/computation11020024
Chicago/Turabian StyleLiang, David, Ziji Zhang, Miriam Rafailovich, Marcia Simon, Yuefan Deng, and Peng Zhang. 2023. "Coarse-Grained Modeling of the SARS-CoV-2 Spike Glycoprotein by Physics-Informed Machine Learning" Computation 11, no. 2: 24. https://doi.org/10.3390/computation11020024
APA StyleLiang, D., Zhang, Z., Rafailovich, M., Simon, M., Deng, Y., & Zhang, P. (2023). Coarse-Grained Modeling of the SARS-CoV-2 Spike Glycoprotein by Physics-Informed Machine Learning. Computation, 11(2), 24. https://doi.org/10.3390/computation11020024