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W N e

Abstract: Coarse-grained (CG) modeling has defined a well-established approach to accessing greater
space and time scales inaccessible to the computationally expensive all-atomic (AA) molecular
dynamics (MD) simulations. Popular methods of CG follow a bottom-up architecture to match
properties of fine-grained or experimental data whose development is a daunting challenge for
requiring the derivation of a new set of parameters in potential calculation. We proposed a novel
physics-informed machine learning (PIML) framework for a CG model and applied it, as a verification,
for modeling the SARS-CoV-2 spike glycoprotein. The PIML in the proposed framework employs a
force-matching scheme with which we determined the force-field parameters. Our PIML framework
defines its trainable parameters as the CG force-field parameters and predicts the instantaneous
forces on each CG bead, learning the force field parameters to best match the predicted forces
with the reference forces. Using the learned interaction parameters, CGMD validation simulations
reach the microsecond time scale with stability, at a simulation speed 40,000 times faster than the
conventional AAMD. Compared with the traditional iterative approach, our framework matches
the AA reference structure with better accuracy. The improved efficiency enhances the timeliness of
research and development in producing long-term simulations of SARS-CoV-2 and opens avenues to
help illuminate protein mechanisms and predict its environmental changes.

Keywords: coarse-grained modeling; SARS-CoV-2; molecular dynamics; machine learning

1. Introduction

All-atomic molecular dynamics (AAMD) simulations have defined a foundational
basis for molecular modeling, providing both atomic- and femtosecond-level resolutions
into the dynamic evolution of systems. However, its computational cost often limits
its practical and large-scale applications beyond microsecond simulations of millions of
atoms. Multiscale coarse-grained (CG) modeling defines a well-established approach
within literature for simulating complex, high-definition systems using simplified, lower-
resolution representations, often by aggregating groups of atoms into a single CGMD
“bead,” thus increasing computational efficiency [1-4]. Popular methods of CG strive to
match structure properties or energy distributions of fine-grained or experimental data
which center around describing a new force field, consisting of the system’s parameters and
potential calculations, to reproduce the properties of all-atomic (AA) reference simulations.
In practice, the CG approaches do not aim to fully reproduce the distributions of the
reference data, instead focusing on optimizing, and thus sacrificing complexity in favor
of accessing more relevant simulation spatial and temporal scales. The optimization of
an accurate and consistent CG model remains an active and significant challenge in the
field [5-7].
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Recent advances in machine learning (ML) have proven their strength to accelerate
both in vitro and in silico biological studies [8-11]. In this work, we develop a novel physics-
informed machine learning (PIML) framework for parameterization and optimization of
CG force fields, resulting in the development of physics-informed CG models from fine-
grained molecular dynamics (MD) to enable simulation across greater spatial and temporal
scales that are inaccessible to conventional AAMD simulations. As an example, we focus on
the SARS-CoV-2 spike glycoprotein in practical application. The outbreak of SARS-CoV-2
in 2019 and its continued persistence have led to millions of deaths globally [12], prompting
investigations of its molecular structure and mechanisms of infection. The outer surface of
the virion is covered by numerous unique spike proteins, largely responsible for the binding
of the virus to the host cell receptor angiotensin-converting enzyme 2, thus mediating cell
entry [13]. Hence, understanding this protein is crucial to investigating the infectivity of the
virus and taking steps toward better therapeutics and vaccines. In this study, the protein
serves as a prime example of both a timely and significant application for our proposed
methodology. While studies are currently underway in uncovering specific mechanisms
of action of the SARS-CoV-2 virion or possible therapeutics [14,15], many practical and
large-scale applications of AAMD simulations are challenged by the computational expense
when dealing with this S-protein of over twenty thousand atoms [16].

Efforts have been made to develop CG models with the corresponding force fields
to simulate the S-protein; for instance, a hetero-elastic network model [17,18] was used to
optimize bonded energy calculations, while relative-entropy minimization was applied
to learn nonbonded interactions and an empirical approach was taken to refine the CG
model [18]. Another study [2] utilized the iterative Boltzmann inversion method (IBIM)
to reproduce the reference atomic fluctuations. We propose a novel ML-based parameteri-
zation approach that goes beyond the existing approaches by defining physics-informed
force field parameters and learning the CG free energy functions that account for the
entire network of bonded and nonbonded interactions. We unify the optimization task
for the CG force field for more efficient parameter determination. The model, trained by
a force-matching scheme, corroborates the CG forces and associated effective potential
with the AAMD simulation data. This approach, offering an easily generalizable means of
parametrization to different proteins and applications, differentiates from other schemes
that rely on empirical or user-defined parameters.

While there exist ML-based force fields in other studies, most notably CGNet [19], and
its variants CGSchNet [20], as well as TorchMD [21], they are different from our approach.
While they were developed for application on smaller proteins such as alanine dipeptide
or chignolin, this study aims to tackle a more challenging application with a significantly
larger protein, and hence we rely on ML to derive and parameterize a force field.

The interactions of the bottom-up CG model, in our approach, use a combination
of iterative and PIML strategies. The AAMD simulations, producing the ground truth,
are conducted on powerful supercomputers to help obtain massive data to derive the
associated CG model. Our main contributions are:

e Aninnovative application of supervised ML is proposed to derive a physics-informed
CG model.

e  The supervised ML is combined with molecular dynamics towards greater efficiency,
achieving a speed-up of CGMD simulations of 40,000 over the conventional AAMD
simulations while retaining structural accuracy.

o  The greater efficiency enhances the timeliness of the research in producing long-term
simulations and blazes a path for new applications and further investigation, i.e.,
protein binding and prediction of environmental changes.

The remainder of this paper is organized as follows. Section 2 describes the physics-
informed CG model and its implementation. Section 3 reports the experimental results
of the CGMD simulations and corroborates them with the AAMD simulations. Section 4
provides discussions and future direction in multiscale modeling of biomolecular systems.
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2. Materials and Methods
2.1. Coarse-Grained Structure

The full SARS-CoV-2 S-protein model was obtained from the protein data bank 6VXX
and was run through NAMD software [22,23] on the AA system consisting of 22,815 atoms
(a total of 45,153 atoms including the hydrogens). The coarse-grain structure follows the es-
tablished aggressive Shape-Based Coarse Graining (SBCG) approach [6], which reduced the
model to 60 representing particles, maintaining the homotrimeric structure with 20 atoms
per chain (Figure 1 and Table 1). Atoms were assigned to beads based on the overall
topology of the macromolecule. This involved the use of a topology-preserving neural
network, where each CG bead corresponds to a node in the network and the coordinates of
the atoms are inputted to adapt the neural network [24]. The hyperparameters used in the
SBCG GUI are as follows: initial eps = 0.3, final eps = 0.05, initial lambda = 5.0, and final
lambda = 0.01, with bonds formed from the all-atom structure. Beads are uncharged, but
the CG model is fitted to reproduce the electrostatics present in the AAMD simulations.

1 CG bead ™~ 380 particles

Figure 1. Structural visualization for AA vs. CG model. Red, blue, and green denote 3 chains.

Table 1. Statistics for AA vs. CG model.

AA Model CG Model
Atoms 22,815 (45,153 w/hydrogens) 60
Bonds 23,385 81
Angles 31,887 159
Dihedrals 37,872 231

2.2. Coarse-Grained Force Field

Our physics-informed CG modeling follows a multiscale approach, characterized
roughly by the transfer of high resolution AA data to the CG scale through the param-
eterization of a CG model [25]. The approach is shown in Figure 2. In the first box of
“Data Collection,” spatial and temporal mapping schemes are employed to map the AAMD
simulations to the reduced-resolution CG structure, representing the ground truth. In
the second box of “Parameter Optimization,” a new CG force field is parameterized to
conform to this ground truth. This is carried out by first employing IBIM on the bonded
parameters [26,27], which iteratively scales parameters and simulates trials to match the
reference radial distribution function (RDF). Visual Molecular Dynamics (VMD) software
is used to initialize the non-bonded terms [28] based on approximated values and solvent-
accessible-surface area (SASA) calculations [29]. In the last box of “Validation Analysis,”
the learned parameters are implemented in a CGMD to corroborate the proposed method
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with the baseline reference. The simulations are evaluated in terms of simulation accuracy
and computation speed. Specific details are provided in the following sections.

G H Parameter : ;”'”'””””””””””””””'””””5
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Figure 2. Illustration of the proposed CG modeling pipeline.

We converted our reference data to the CG scale to use the AAMD validation simula-
tion data for training. This reference trajectory obtained in Appendix A.1. (Appendix A)
was processed by mapping the extracted coordinate and force data to the CG scale both
spatially and temporally. Spatial mapping was conducted by computing the center of mass
and the sum of forces for each atom group, constituting a bead, according to:

Yi WiXi AA
XI,CG = 12?71;‘/ 1
1 1
Fiec =Y fiaas ()
i

where X cc and F ¢ represent the calculated position and force of bead I, x; 44 and f; 4
represent the position and force of atom i within the atom group constituting bead I, and
w; represents the mass of atom i as a weighting factor. In addition to the spatial mapping,
temporal averaging is performed to account for the greater temporal scales used in CGMD
simulations. We averaged both coordinates and forces across the temporal dimension every
100 frames.

We initialized the parameters with traditional CG force field parameterization methods
with bonded and nonbonded potentials. The bonded potentials are based on fixed lists of
2-, 3-, and 4-body interactions (bonds, angles, and dihedrals) modeled as spring harmonics
with parameters as spring harmonic constants. The nonbonded potential is modeled with
a Lennard-Jones (L]) potential accounting for the weak dipole attraction between distant
atoms and the hard-core repulsion between close atoms. The IBIM method is employed
to initialize the new CG model force-field parameters, specifically the bonded parameters.
Diverging from the original implementation, we incorporated the refinement of dihedral
parameters in addition to the bonds and angles. From the ground truth, we extracted
distribution functions P(x) of variable x representing the bond lengths, bond angles, or
torsion angles. The potential function U(x) is constructed using the Boltzmann relation:

U(x) = —kgTInP(x), ©)]

where kp is a parameter and T represents the temperature. Furthermore, the bonded
parameters can be modeled as harmonics:

U(x) = %k(x —x0)?%, 4)

where x( represents the respective equilibrium measurement and k represents the harmonic
constant. Thus, the Boltzmann inversion relationship between distribution functions and
harmonic constants can be illustrated as follows:

(@) - () = B, ©)
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where the equilibrium measurement xy is equal to the average position (x). For a network
of these bonded interactions, these bonds, angles, and dihedrals are not independent, and
thus when parameters for each of them are derived individually using this Boltzmann
inversion relationship, the stiffness of the structure may be overestimated. Hence, there is
necessity in further optimization to better match the reference distributions.

The parameters for the non-bonded L] potential are initialized and approximated
by VMD and are based on the SASA calculations of the beads. Further detail into this
procedure and its calculations are given in (A3) in Appendix A.

With the L] potential, Uy j, between pairs of beads (denoted by i and j subscripts) is
defined as shown in Equation (6):

12 6
Rmini' Rmini-
UL]:el-]- - / -2 — / (6)
1’1] 7‘1]

The relations between the €;; and Ry, pair parameters with their respective trainable
parameters for individual beads are defined below in Equations (7) and (8), respectively.

€ij = \/€i *€j, ?)

Riin, Rinin;
Ruin.. = . L.
min;; 5 + P 8

2.3. Physics-Informed ML Model

A force-matching approach helps preserve thermodynamic consistency by minimizing
the error between the instantaneous ground-truth forces and predicted forces [19,20,29,30].
Our PIML model defines its trainable parameters as the CG force field parameters. The
CG coordinates serve as the input to the model, and the model further predicts the total
potential energy of the system. All physically relevant invariances are thus preserved.
Leveraging an automatic differentiation function, we take the negative gradient of this
energy with respect to the input coordinates, and thus effectively obtain the instantaneous
predicted forces. The task is thus to learn the parameters to minimize the error between
these predicted forces and ground-truth forces in the loss function.

The model architecture, shown in Figure 3, is detailed further below. The model
contains an initial featurization layer that converts the input coordinates to the pairwise
distances, bond lengths, bond angles, and torsion angles, as displayed in Figure 3. The
model uses two physics-informed layers, containing the trainable parameters, for the
prediction of energy: one is the Harmonic layer comprised of bond, angle, and dihedral
terms as bonded potentials; and the other is the Lennard-Jones layer.

Within the Harmonic layer, the trainable parameters include the harmonic constants,
whereas, in the L] layer, the trainable parameters are the bead strength €; and the minimum
radius, Ry;y,, for each unique bead i. There exist 471 and 40 trainable parameters that
comprise the bonded and non-bonded interactions, respectively, in the physics-informed
model. For the dihedral potentials, the periodic representation accounts for the periodicity
of dihedrals, where the phase shift angle was adjusted to fit the equilibrium value as the
potential minima. The resulting energy governing the CG force field can be calculated as:

atoms Riin.: 12 Ryin.. 6
Uc= ¥ kb(r—ro)er v ka(9790)2+ Y kd(1+COS(ﬂ1])*d)))+ E €1]|:<r1/1]> *2(%) :|/ (9)

bonds

angles dihedrals i<j "if
where k,;, kp, and k; are spring factors, r is bond distance, 8 is bond angle, ¢ is torsion
angle, and ¢ is defined as the torsion phase shift angle, which acts as an equilibrium angle
in the periodical representation.
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Figure 3. The proposed physics-informed model architecture.

—
The force F ¢ can be calculated by the gradient of the potential

.
Feg = —Vilce. (10)

with the loss function defined as

N 2
Loss = <<PCG + VUCG> >, (11)

where Fc¢ represents the predicted instantaneous force, and Ucg represents the CG poten-
tial. This loss as a mean-squared error function between the predicted and the mapped
ground-truth forces provides a means of minimizing their difference.

2.4. Validation and Verification

A simulation for CGMD validation is carried out using the learned parameters, to-
gether with a separate AAMD simulation, to measure the performance of our approach
across the metrics of accuracy and speed. With regards to accuracy analysis, the RDFs
are applied in providing insight into the distance distribution of particles around certain
particles. The torsional analysis is applied in the form of free energy surface plots and the
free energy was plotted along two dihedral quadruples, providing insight into the confor-
mational states. From the plots, validation simulations are compared with the ground-truth
training data using the dihedral pairs belonging to the S-protein receptor-binding domain
(RBD) and S2 domain. Additionally, root-mean-square-deviation (RMSD) and root-mean-
square-fluctuation (RMSF) are analyzed to monitor the structural stability of the compared
models throughout their respective trajectories.

In addition to the simulated accuracy, we examined the speeds to measure our model’s
efficiency. The CGMD simulation was run for one microsecond and its simulation speed
was carefully compared with the continuous AAMD validation simulation.

We extended the study to a solvated application beyond the solvent-free simulation
environment. Using the same learned forces, we explicitly solvate the CG S-protein into a
18 nm x 18 nm x 18 nm MARTINI water box [31]. In this hybrid system, each MARTINI
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water molecule is represented by a single bead (of mass 72 amu). To evaluate the accuracy of
this solvated experiment, we ran an AAMD simulation of the S-protein solvated in a water
box of TIP3 water molecules at the same 310K temperature in canonical (NVT) ensemb]es.

3. Results

With the learned parameters, the accuracy and speed of the CGMD simulations
vs. the AAMD validation simulations are reported. Using the 97,905 coordinates and
force frames, the parameter initialization for bonds, angles, and dihedrals, respectively,
proceeded with 3 IBIM iterations. For each iteration, the trial simulations were conducted
with 10 femtosecond timesteps, minimized for 500 picoseconds, and simulated for 4 ns.
There exist 511 total learnable parameters that are learned with the physics-informed model
configured with the Adam optimizer with a learning rate of 0.001 and a batch size of 256
for 10 epochs.

3.1. Accuracy Analysis

The CGMD and the AAMD simulations start from the same structure; the visual-
ized protein structures of the starting and ending conformations after microsecond-level
simulation in Figure 4 show their good alignment.

Figure 4. CG structure visualization: AAMD validation simulation final frame state (left). CGMD
simulation final frame state (right).

The RDF measures the distribution of distances between the pairs of particles of two
specified atom groups. For instance, Figure 5 defines these two groups to be some given
“Atom #” and all “Atoms,” respectively. Comparing the RDFs of our CGMD simulations
with the ground-truth data, we measure the deviation between the mapped ground truth
and the proposed CGMD simulations. As illustrated in Figures 5 and 6, the proposed PIML
approach reproduces the structure in reference plots with reasonable accuracy, as it can
capture the peaks in RDFE.

To quantitatively measure the accuracy of the RDF plots, we incorporate Spearman’s
correlation coefficient [32] to measure the correlation between the CGMD and reference
AAMD RDF plots. In Figures 5 and 6, the Spearman’s correlation coefficients for each RDF
plot are 0.7472, 0.6560, 0. 6278, 0.5690, and 0.9692 for atoms 7, 11, 14, and 19 and all atom
pairs, respectively. This incorporation of a quantitative metric of Spearman’s correlation
coefficient confirms this reasonable correlation in Figure 5, and strong overall correlation in
Figure 6.

Four representations are chosen in Figure 5: “Atom 7” and “Atom 14” plots present
regions on the N-terminal domain (NTD), whereas the “Atom 11” plot references a bead
located on the receptor-binding domain of the S-protein. “Atom 19” represents the base of
the 52 subunit, closer to the stalk of the S-protein.

The free energy profiles are plotted as a function of dihedral angles. The plots are used
to analyze and compare the torsion angles as a representation of the protein conformational
states. Two separate pairs of torsional angles are displayed for such analysis: one is located
on the receptor-binding domain, and the other is in the S2 subunit. Figure 7 shows that
the proposed CGMD simulations match precisely the ground-truth training data. The
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proposed physics-informed CG model captures the positions and peaks in the respective
pairs with comparable accuracy to the AA model.

RDF: Atom 7
— e
0 2 4 6 8 10
r(nm)
RDF: Atom 11
— AAMD
—— CGMD
0 2 4 6 8 10
r(nm)
RDF: Atom 14
— AAMD
— CGMD
0 2 4 6 8 10
r(nm)
RDF: Atom 19
— AAMD
— CGMD
0 2 4 6 8 10
r(nm)

Figure 5. RDF plot from single reference atom comparison of the CGMD simulations vs. the AAMD
validation simulations. In the colored beads visualizations: blue—chain A; red—chain B; green—
chain C; orange—selected atoms. Spearman’s correlation coefficients: (a) 0.7472; (b) 0.6560; (c) 0.6278;

(d) 0.5690.
RDF: All Atoms
7 — AAMD
61 — CGMD
5.
-4
D31
2.
1_
O- T T T T T T
0 2 4 6 8 10
r (nm)

Figure 6. RDF plot of all atoms for comparison of CGMD vs. AAMD. Spearman’s correlation
coefficient: 0.9692.
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Figure 7. Free energy profiles of RBD pair (top), NTD pair (middle), and S2 subunit pair (bottom).
Blue—chain A; red—chain B; green—chain C; orange—selected dihedral quadruplet.

Further analysis, showing the stability for the entirety of the microsecond, suggests the
proposed physics-informed CG approach is feasible for long-term modeling of the SARS-
CoV-2 S-protein. The evolution of the proposed physics-informed CG model trajectory was
analyzed by calculating the RMSD values using the starting structure as a reference frame.
The RMSD reveals the overall stability and conformational change of the whole protein.
Protein coordinates are recorded every 10 picoseconds and the RMSD was calculated on the
aligned trajectory. Figure 8 presents the RMSD of the proposed CGMD simulations along-
side the AAMD validation simulations. The CGMD RMSD remains consistent throughout
the full microsecond of simulation, indicating long-term structural stability.

(a) RMSD (b)100 RMSD Relative Errors
s PIML CGMD
3 801 @ IBIM CGMD
o
5wl
— : —
L - T : T T T - =
L 40 i H H
AL E R BN RERNR
2| — PMLCGMD — BMCGMD | & 20| = = = _ = = T = =
—— AAMD 0-————-——-
0_ 4 e —— —— — —_ — —— —— ——
0 200 400 600 800 1000 0 100 200 300 400 500 600 700 800 900
Time (ns) Time (ns)

Figure 8. RMSD comparison between the proposed CGMD simulation and the AAMD validation
simulation. RMSD in angstroms (a). RMSD relative errors (b).
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The RMSD relative errors are included as well. Each error bar is normalized and
extracted for statistics within a time period of 100 ns. All three simulations plotted below
start with the same structure, and the relative error represents the relative error of our
PIML and IBIM methods, respectively, with respect to the AAMD structures throughout
their CGMD simulations. The calculation for such relative error is defined below:

o — [RMSDcG(t) — RMSDaa(t)]
t =

RMSDAA(t) (12)

where RMSDc(t) and RMSD 44(t) represent the RMSD of the CGMD and AAMD simu-
lations, respectively, at time .

The presented CGMD simulations appear to have greater fluctuations in comparison
with the AAMD validation simulations, which indicates the CGMD is likely exploring a
greater distribution of conformations. This is expected from the CG procedure, specifically
how the averaging procedure smooths effective potentials, and thus how it facilitates en-
hanced sampling of the underlying phase space [33]. Our CGMD appears to have reached
structures with RMSD values consistently closer to the RMSD values of the validation
AAMD simulation compared with the IBIM approach. The animated trajectories of the
AAMD validation simulation and the CGMD simulation are provided in the Supplemen-
tary Materials.

3.2. Speed Analysis

Both the AAMD validation simulations and the presented CGMD simulations are
conducted on a local cluster, where each computing node consists of two Intel Xeon
E5-2690v3 CPUs. By using the parallel NAMD package on 1 node with 24 CPU cores,
the AAMD validation simulations with 1 femtosecond as the time step size produced
0.243 nanoseconds/day while the CGMD simulations with 10 femtoseconds as the time
step size produced 9532.6 nanoseconds/day. This CGMD timestep was determined ex-
perimentally as the optimal speed that would maintain stable simulation. Specifically, we
experimented with an array of timestep sizes ranging from 4 fs to 100 fs, and we settled on
10 fs for stability and speed. The experimental outcomes indicate that the presented CGMD
validation simulations have a speed nearly 40,000 times faster than that of the AAMD
validation simulations. Detailed measurements are presented in Table 2.

Table 2. Validation simulation comparisons using 24 CPU cores.

Simulations Tlm(? Step Total Steps Slm.ulated Slml.llatlng Simulation
Size Time Time Speed
AAMD 1fs 100,000 0.1ns 35,557 s 0.243 ns/day
CGMD 10 fs 500,000,000 5us 45,318 s 9532.6 ns/day

3.3. Solvation Application

We assimilated our CG S-protein model with the MARTINI solvent using two sep-
arate cutoff configurations for nonbonded interactions. In this new configuration, the
nonbonded interactions within the S-protein group are configured with a cutoff of 4.5 nm
and smooth switching starting at 2.0 nm. Nonbonded interactions within the MARTINI
solvent and between the solvent and the S-protein are configured with a cutoff of 1.2 nm
and a smooth switching starting at 0.9 nm. For the RDF results as illustrated in Figure 9,
our solvated model reproduces the structure in AAMD validation simulations collected
in [14], resembling the significant peaks and retaining the overall structure of the protein.
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Figure 9. RDF plot from single reference atom comparison of the solvated CGMD simulations vs. the
solvated AAMD validation simulations. “Atom 7” and “Atom 14" reflect on the NTD, and “Atom 11”
reflects the receptor-binding domain.

4. Discussion

We presented an artificial intelligence-enabled model for multiscale CGMD simula-
tions. The PIML approach to the model parameterization includes two phases: (1) using
AAMD simulations to generate the ground truth for learning parameters and (2) using the
learned parameters to run long-term CGMD simulations. The physics-informed bottom-up
CGMD model simulations are compared with the ground truth AAMD simulations, the
gold standard in accuracy, indicating a resemblance of the conformation. The proposed CG
model is significantly faster than the AAMD simulation model. With the aggressive CG ap-
proach, the proposed model achieves nearly 40,000 x the speed of the AAMD simulations.

The work underscores the following contributions toward more efficient multiscale
modeling:

e The approach demonstrates the superiority of the supervised ML in deriving a
CG model.

e In combining ML with molecular dynamics, our approach immensely accelerates
simulations compared with the conventional AA models while maintaining stability
and structural accuracy.

e  The gained efficiency can elucidate protein mechanisms and render a great impact on
future simulation studies by relieving the ongoing concerns about timeliness.

The application of our model into a solvated environment was presented and no term
in our CG model was calibrated to reproduce the solvated reference. While rough structural
accuracy was preserved, most clearly seen with the RDF plots, a limitation was noticed
in our solvated simulation; the protein is observed to contract more than the reference. It
is likely that calibration to the cutoffs, as well as the switching value, could yield better
accuracy, and we intend to explore this as a future work. The proposed method underscores
an important step forward in extending these large systems to actual applications in cases
that it was not explicitly parametrized to reproduce, and in future works, we intend to
adapt this proposed approach to binding of the S-protein with the ACE-2 receptor.
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Appendix A
Appendix A.1. All-Atomic Simulations

To obtain the reference data, we first conducted AAMD simulations on the AiIMOS
supercomputer, a heterogeneous system architecture that includes IBM POWER9 CPUs
connected to NVIDIA TESLA V100 GPUs, and the local computing cluster Seawulf at Stony
Brook University. We utilized the CHARMM-36 force field [34] in describing the system in
a vacuum canonical ensemble at 310K. Using NAMD software, conjugate gradient and line
search energy minimization (10 picoseconds) was run prior to 400 picoseconds of simulation
(1 fs timestep). From the stable simulation range, we randomly generated 200 different
initial positions and orientations to branch off into separate, unique simulations. This
was carried out to include replicas to address the chaotic component of MD simulations.
From these simulations, frames containing coordinate and force data were collected every
fs. A total of 9.7905 ns of the simulation data were accumulated, which upon mapping
yielded 97,905 frames of coordinates and forces. From here on, this data constitutes our
ground-truth data that represents the reference data the CG model aims to match.

Appendix A.2. Dihedral Potential Term

For the dihedral potentials, they can be represented in two ways: quadratic repre-
sentation of Equation (A1) and periodic representation of Equation (A2). The quadratic
form represents the dihedral potential in the same manner as bonded potentials, where
the trainable constants are analogous to spring constants. The periodic representation
accounts for the periodicity of dihedrals, where the phase shift angle was adjusted to fit the
equilibrium value as the potential minima.

12 6
2 2 2 atoms Rmin,-]- Rmini]-
U = ) ko(r—ro0)"+ 3 ka(®—00)"+ 3 ka(b—0)"+ } e (——| —2(——] |, (A]
angles dihedrals i<j 1 ]

bonds

atoms min; - 12 min;: 6
U= T kylr—r+ T ka0~ 002+ ¥ k1 +cos(mb— )+ 5 e,-]-[(Rrij”) ~2( %) } (A2

angles dihedrals i<j

The torsion angle distribution can be plotted to depict the unimodality in Figure A1l
and thus confirm the choice of n = 1 as the multiplicity for the periodic representations.
The distributions in Figure Al present more common conformations with the yellow
color, where the means are the respective equilibrium states. While quadratic, orn =0
representation also fits this unimodality, we understand that long-term secondary structural
changes are unlikely to be modeled properly with this quadratic dihedral form. Thus,
we favor the use of the periodic form, which lends itself to more flexibility in case of
additional states.
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Figure A1. Randomly selected examples of torsion angle distributions for 4 dihedrals of atom indices
of (a): (0, 11, 4, 1); (b): (0, 11, 4, 9); (c): (0, 13, 11, 14); and (d): (1, 4, 9, 14).

Appendix A.3. Parameter Initialization

The traditional IBIM used to initialize the bonded parameters process follows the fol-
lowing procedure: reference distributions extracted from ground-truth AAMD simulations.
Initial bonded parameter “guesses” are obtained through the relation between references
and bonded parameters in Equation (5). A trial simulation is run by configuring a short
CG simulation with the aforementioned parameter guesses under the environment setup
specified in Section 3. Distributions are extracted and compared with the reference AAMD
distributions, and we then scale the bonded parameters accordingly to better match the
distributions. This procedure of trial simulations and scaling parameters is iterated until
the distributions match within reasonable tolerance. Our procedure involved 3 iterations
until the parameters (denoting stiffness) extracted from its distributions are roughly within
a 25% average deviation from that of reference [6]. Figure A2 illustrates the IBIM refinement
of the parameters to initialize our parameters and match the reference distributions to
reasonable accuracy after three iterations.

The nonbonded L] parameter initialization based on SASA calculations is described as
follows [29]. In this procedure, each bead i was assigned an L] strength €; based on:

<5A5A’.””"’b ) ’

€ = €max | ———7 |~ (A3)
l SASA!

where SASA?F " and SASA!°! represent the hydrophobic and total solvent-accessible

surface areas of domain i, respectively, and €,y is the user-controlled maximum energy
for the L] potential well depth. The reasoning behind using the SASA to determine ¢; is to
allow hydrophobic beads to aggregate and hydrophilic beads to dissolve in the solvent,
which is implicitly present in the CGMD simulations. The user-controlled €,y was selected
to be 20 kcal/mol based on approximations from findings in previous studies [29]. It is
noted that while the user-defined constants are often tested for closest agreement with
AAMD simulations in other studies [5], they will be later refined in the methodology as
parameters by the ML model. The L] potential radius r; (with the minimum of R;;,) is
given by the radius of gyration of the group of atoms constituting bead i, which is increased
by a user-defined addition, e.g., an increment of 1 A was selected in this work which
accounts for the fact that each atom has a radius typically of 1-2 A.
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Figure A2. Illustration of IBI method’s initialization of parameters for 3 iterations. Bonds (a); angles (b);
dihedrals (c).

Appendix A.4. Parameter Learning

Figure A3 displays the loss plot over the training process. Both training and validation
losses approached convergence after 4 epochs. The optimization of each individual bonded
and non-bonded parameter over the 10 epochs is visualized in Figure A4. Hyperparameters
of the network were determined experimentally to reach lower and faster convergence of the
training loss. In our PIML, there exists two different groups of hyperparameters: the layers
and trainable parameter count that were determined by the physics knowledge and the
protein structure; and the learning rate, optimizer, learning rate decay scheduler, and batch
size which were tuned experimentally. The range of learning rates we experimented with
was 0.0005 to 0.003, and we settled on 0.001. The range of batch sizes experimented with
was 16 to 512, and we settled on 256. The learning rate decay scheduler was experimented
with along the full 10 epochs; the rate of decay ranged from 0.1 to 0.3, and we settled on 0.3.

Training/Validation Loss

—e&— Training Loss
+— Validation Loss

Epochs

Figure A3. Training and validation loss vs. epochs.
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Figure A4. Physics-informed parameter learning for over 10 epochs. Bonds (a); angles (b); dihedrals (c);
LJ Rmin (d); L] Epsilon (e).

Appendix A.5. ML Refinement on L] Terms

We delved further into some specific changes reflected in the RDF measurements
because of our ML design. The ML procedure indicates significant refinements in the
model parameterization, particularly on the non-bonded L] potential terms. Within this
refinement is the very noticeable decrease in both the epsilon and the associated well-
depth terms. Upon further investigation, it is shown that the model’s calculated energies
begin as positive (repulsion) and gradually become negative (attraction) by the end of the
training, demonstrating the proper optimization to match the distances of the ground-truth
data. In comparison with the IBIM trial results, specifically on the atom pair between
atom numbers 17 and 46, the learned distances are more consistent with the ground-truth
result, as shown in Figure A5. Furthermore, the incorporation of a quantitative metric of
Spearman’s correlation coefficient, which is 0.5831 for the PIML CGMD and —0.0376 for
the IBIM CGMD, confirms this advantage.
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Figure A5. RDF plot between the atoms 17 and 46. Blue—chain A; red—chain B; green—chain C;
orange—selected nonbonded atom pair. Spearman’s correlation coefficients: (PIML CGMD) 0.5831;

(IBIM CGMD) —0.0376.

Appendix A.6. RMSFs for Bonded Interactions

The comparison RMSFs of our CGMD simulation and the ground-truth AAMD simula-
tions is shown in Figure A6. The results indicate that the PIML yielded a relatively accurate
fit to the AAMD fluctuations. The difference between the ground-truth and continuous
validation data in this case mainly stems from the temporal averaging in the ground-truth
data, which may have dampened some fluctuations.
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Figure A6. RMSF comparison between the proposed CGMD simulation and the AAMD validation

simulations.
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