Scrutinizing Dynamic Cumulant Lattice Boltzmann Large Eddy Simulations for Turbulent Channel Flows
Abstract
:1. Introduction
2. Computational Model
2.1. Numerical Method
2.1.1. Unit Conversion
2.1.2. Collision Model
2.1.3. Subgrid Scale Model
2.1.4. Suggested Model
2.2. Test Case and Parameter Space
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spalding, D. A single formula for the law of wall. J. Appl. Mech. 1961, 28, 455–458. [Google Scholar] [CrossRef]
- Grotjans, H.; Menter, F. Wall Functions for General Application CFD Codes. In Computational Fluid Dynamics ’98, Proceedings of the 4th European Computational Fluid Dynamics Conference, Athens, Greece, 7–11 September 1998; Papailiou, K., Tsahalis, D., Periaux, J., Hirsch, C., Pandolfi, M., Eds.; John Wiley & Sons: Chichester, UK, 1998; pp. 1112–1117. [Google Scholar]
- Rung, T.; Lübcke, H.; Thiele, F. Universal wall-boundary conditions for turbulence-transport models. ZAMM J. Appl. Math. Mech. Z. Für Angew. Math. Und Mech. 2001, 81, 481–482. [Google Scholar] [CrossRef]
- Spalart, P.; Jou, W.H.; Strelets, M.; Allmaras, S.; Liu, C.; Liu, Z.; Sakell, L. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. In Proceedings of the First AFOSR International Conference on DNS/LES: Direct numerical simulation and large eddy simulation, Ruston, LA, USA, 4–8 August 1997; Greyden Press: Dayton, OH, USA, 1997; pp. 137–148. [Google Scholar]
- Travin, A.; Shur, M.; Strelets, M.; Spalart, P. Detached-Eddy Simulations Past a Circular Cylinder. Flow Turbul. Combust. 2000, 63, 293–313. [Google Scholar] [CrossRef]
- Spalart, P.; Deck, S.; Shur, M.; Squires, K.; Strelets, M.; Travin, A. A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theor. Comput. Fluid Dyn. 2006, 20, 181. [Google Scholar] [CrossRef]
- Shur, M.; Spalart, P.; Strelets, M.; Travin, A. A hybrid RANS-LES model with delayed DES and wall-modeled LES capabilities. Int. J. Heat Fluid Flow 2008, 29, 1638–1649. [Google Scholar] [CrossRef]
- Gritskevich, M.; Garbaruk, A.; Schütze, J.; Menter, F. Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model. Flow Turbul. Combust. 2012, 88, 431–449. [Google Scholar] [CrossRef]
- Kotapati, R.; Keatin, A.; Kandasamy, S.; Duncan, B.; Shock, R.; Chen, H. The Lattice-Boltzmann-VLES Method for Automotive Fluid Dynamics Simulation, a Review; Technical Report 2009-26-0057; SAE International: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Noelting, S.; Fares, E. The Lattice-Boltzmann Method: An Alternative to LES for Complex Aerodynamic and Aeroacoustic Simulations in the Aerospace Industry; Technical Report 2015-01-2575; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Niedermeier, C.; Janßen, C.; Indinger, T. Massively-parallel multi-GPU simulations for fast and accurate automotive aerodynamics. In Proceedings of the 7th European Conference on Computational Fluid Dynamics, Glasgow, Scotland, UK, 11–15 June 2018. [Google Scholar]
- Lenz, S.; Schönherr, M.; Geier, M.; Krafczyk, M.; Pasquali, A.; Christen, A.; Giometto, M. Towards real-time simulation of turbulent air flow over a resolved urban canopy using the cumulant lattice Boltzmann method on a GPGPU. J. Wind Eng. Ind. Aerodyn. 2019, 189, 151–162. [Google Scholar] [CrossRef]
- Sharma, K.; Straka, R.; Tavares, F. Lattice Boltzmann Methods for Industrial Applications. Ind. Eng. Chem. Res. 2019, 58, 16205–16234. [Google Scholar] [CrossRef]
- Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, A.; Viggen, E. The Lattice Boltzmann Method; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Janßen, C.; Mierke, D.; Überrück, M.; Gralher, S.; Rung, T. Validation of the GPU-Accelerated CFD Solver ELBE for Free Surface Flow Problems in Civil and Environmental Engineering. Computation 2015, 3, 354–385. [Google Scholar] [CrossRef]
- Geier, M.; Schönherr, M.; Pasquali, A.; Krafczyk, M. The cumulant lattice Boltzmann equation in three dimensions: Theory and validation. Comput. Math. Appl. 2015, 70, 507–547. [Google Scholar] [CrossRef]
- Schornbaum, F.; Rüde, U. Massively parallel algorithms for the Lattice Boltzmann Method on nonuniform grids. SIAM J. Sci. Comput. 2016, 38, 96–126. [Google Scholar] [CrossRef]
- Watanabe, S.; Aoki, T. Large-scale flow simulations using lattice Boltzmann method with AMR following free-surface on multiple GPUs. Comput. Phys. Commun. 2021, 264, 107871. [Google Scholar] [CrossRef]
- Latt, J.; Malaspinas, O.; Kontaxakis, D.; Parmigiani, A.; Lagrava, D.; Brogi, F.; Belgacem, M.; Thorimbert, Y.; Leclaire, S.; Li, S.; et al. Palabos: Parallel Lattice Boltzmann Solver. Comput. Math. Appl. 2021, 81, 334–350. [Google Scholar] [CrossRef]
- Feng, Y.; Miranda-Fuentes, J.; Guo, S.; Jacob, J.; Sagaut, P. ProLB: A Lattice Boltzmann Solver of Large-Eddy Simulation for Atmospheric Boundary Layer Flows. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002107. [Google Scholar] [CrossRef]
- Coreixas, C.; Wissocq, G.; Chopard, B.; Latt, J. Impact of collision models on the physical properties and the stability of lattice Boltzmann methods. Philos. Trans. R. Soc. A 2020, 378, 20190397. [Google Scholar] [CrossRef]
- Geier, M.; Pasquali, A.; Schönherr, M. Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part I: Derivation and validation. J. Comput. Phys. 2017, 348, 862–888. [Google Scholar] [CrossRef]
- Geier, M.; Lenz, S.; Schönherr, M.; Krafczyk, M. Under-resolved and large eddy simulations of a decaying Taylor-Green vortex with the cumulant lattice Boltzmann method. Theor. Comput. Fluid Dyn. 2021, 35, 169–208. [Google Scholar] [CrossRef]
- Gruszczyński, G.; Łaniewski Wołłk, L. A comparative study of 3D cumulant and central moments lattice Boltzmann schemes with interpolated boundary conditions for the simulation of thermal flows in high Prandtl number regime. Int. J. Heat Mass Transf. 2022, 197, 123259. [Google Scholar] [CrossRef]
- Sato, K.; Kawasaki, K.; Koshimura, S. A comparative study of the cumulant lattice Boltzmann method in a single-phase free-surface model of violent flows. Comput. Fluids 2022, 236, 105303. [Google Scholar] [CrossRef]
- Gehrke, M.; Banari, A.; Rung, T. Performance of Under-Resolved, Model-Free LBM Simulations in Turbulent Shear Flows. In Progress in Hybrid RANS-LES Modelling; Notes on Numerical Fluid Mechanics and Multidisciplinary Design; Hoarau, Y., Peng, S.H., Schwamborn, D., Revell, A., Mockett, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 143, pp. 3–18. [Google Scholar] [CrossRef]
- Gehrke, M.; Rung, T. Scale-resolving turbulent channel flow simulations using a dynamic cumulant lattice Boltzmann method. Phys. Fluids 2022, 34, 075129. [Google Scholar] [CrossRef]
- Gehrke, M.; Rung, T. Periodic hill flow simulations with a parameterized cumulant lattice Boltzmann method. Int. J. Numer. Methods Fluids 2022, 94, 1111–1154. [Google Scholar] [CrossRef]
- Asmuth, H.; Janßen, C.; Olivares-Espinosa, H.; Ivanell, S. Wall-modeled lattice Boltzmann large-eddy simulation of neutral atmospheric boundary layers. Phys. Fluids 2021, 33, 105111. [Google Scholar] [CrossRef]
- Yu, D.; Mei, R.; Shyy, W. A Unified Boundary Treatment in Lattice Boltzmann Method. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003; AIAA 2003–0953. American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2003. [Google Scholar] [CrossRef]
- Kim, J.; Moin, P.; Moser, R. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 1987, 177, 133–166. [Google Scholar] [CrossRef]
- Bernardini, M.; Pirozzoli, S.; Orlandi, P. Velocity statistics in turbulent channel flow up to Reτ = 4000. J. Fluid Mech. 2014, 742, 171–191. [Google Scholar] [CrossRef]
- Brasseur, J.; Wei, T. Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids 2010, 22, 021303. [Google Scholar] [CrossRef]
- Haussmann, M.; Claro Barreto, A.; Lipeme Kouyi, G.; Rivière, N.; Nirschl, H.; Krause, M. Large-eddy simulation coupled with wall models for turbulent channel flows at high Reynolds numbers with a lattice Boltzmann method—Application to Coriolis mass flowmeter. Comput. Math. Appl. 2019, 78, 3285–3302. [Google Scholar] [CrossRef]
- Pasquali, A.; Geier, M.; Krafczyk, M. Near-wall treatment for the simulation of turbulent flow by the cumulant lattice Boltzmann method. Comput. Math. Appl. 2020, 79, 195–212. [Google Scholar] [CrossRef]
- Han, M.; Ooka, R.; Kikumoto, H. A wall function approach in lattice Boltzmann method: Algorithm and validation using turbulent channel flow. Fluid Dyn. Res. 2021, 53, 045506. [Google Scholar] [CrossRef]
- Degrigny, J.; Cai, S.H.; Boussuge, J.F.; Sagaut, P. Improved wall model treatment for aerodynamic flows in LBM. Comput. Fluids 2021, 227, 105041. [Google Scholar] [CrossRef]
- Gehrke, M.; Janßen, C.; Rung, T. Scrutinizing lattice Boltzmann methods for direct numerical simulations of turbulent channel flows. Comput. Fluids 2017, 156, 247–263. [Google Scholar] [CrossRef]
- Banari, A.; Gehrke, M.; Janßen, C.; Rung, T. Numerical simulation of nonlinear interactions in a naturally transitional flat plate boundary layer. Comput. Fluids 2020, 203, 104502. [Google Scholar] [CrossRef]
- Chen, S.; Doolen, G. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond; Clarendon Press: Cary, NC, USA, 2001. [Google Scholar]
- Yu, D.; Mei, R.; Luo, L.S.; Shyy, W. Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 2003, 39, 329–367. [Google Scholar] [CrossRef]
- Mohamad, A. Lattice Boltzmann Method; Springer: London, UK, 2011. [Google Scholar]
- Qian, Y.; d’Humières, D.; Lallemand, P. Lattice BGK Models for Navier Stokes Equation. Europhys. Lett. 1992, 17, 479–484. [Google Scholar] [CrossRef]
- He, X.; Luo, L.S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 1997, 56, 6811–6817. [Google Scholar] [CrossRef]
- Dubief, Y.; Delcayre, F. On coherent-vortex identification in turbulence. J. Turbul. 2000, 1, N11. [Google Scholar] [CrossRef]
- Dean, R. Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Eng. 1978, 100, 215–223. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Gross, E.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511–525. [Google Scholar] [CrossRef]
- Ginzburg, I.; Verhaeghe, F.; d’Humières, D. Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions. Commun. Comput. Phys. 2008, 3, 427–478. [Google Scholar]
- D’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.S. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. A 2002, 360, 437–451. [Google Scholar] [CrossRef]
- Tölke, J.; Freudiger, S.; Krafczyk, M. An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations. Comput. Fluids 2006, 35, 820–830. [Google Scholar] [CrossRef]
- Bösch, F.; Chikatamarla, S.; Karlin, I. Entropic multirelaxation lattice Boltzmann models for turbulent flows. Phys. Rev. E 2015, 92, 043309. [Google Scholar] [CrossRef] [PubMed]
- Seeger, S.; Hoffmann, K. The cumulant method for computational kinetic theory. Contin. Mech. Thermodyn. 2000, 12, 403–421. [Google Scholar] [CrossRef]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Nikitin, N.; Nicoud, F.; Wasistho, B.; Squires, K.; Spalart, P. An approach to wall modeling in large-eddy simulations. Phys. Fluids 2000, 12, 1629–1632. [Google Scholar] [CrossRef]
- Coles, D. The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1956, 1, 191–226. [Google Scholar] [CrossRef]
- Cabot, W.; Jiménez, J.; Baggett, J. On wakes and near-wall behavior in coarse large-eddy simulation of channel flow with wall models and second-order finite-difference methods. In Annual Research Briefs; Center for Turbulence Research, NASA/Stanford University: Stanford, CA, USA, 1999; pp. 343–354. [Google Scholar]
- Keating, A.; Piomelli, U. A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation. J. Turbul. 2006, 7, N12. [Google Scholar] [CrossRef]
- Schultz, M.; Flack, K. Reynolds-number scaling of turbulent channel flow. Phys. Fluids 2013, 25, 025104. [Google Scholar] [CrossRef] [Green Version]
180 | 550 | 2000 | 5200 | 20,000 | 50,000 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2800 | 9900 | 43,400 | 129,200 | 602,500 | 1,717,000 | |||||||
■ | 48 | 3.8 | 29 | 19 | 36 | 56 | 24 | 220 | 36 | 555 | 48 | 1040 |
▲ | 24 | 7.5 | 24 | 23 | 24 | 83 | 18 | 290 | 29 | 690 | 36 | 1390 |
● | 18 | 10 | 16 | 34 | 17 | 118 | 14 | 370 | 24 | 825 | 29 | 1740 |
◆ | 12 | 15 | 12 | 46 | 12 | 167 | 12 | 430 | 21 | 960 | 23 | 2170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gehrke, M.; Rung, T. Scrutinizing Dynamic Cumulant Lattice Boltzmann Large Eddy Simulations for Turbulent Channel Flows. Computation 2022, 10, 171. https://doi.org/10.3390/computation10100171
Gehrke M, Rung T. Scrutinizing Dynamic Cumulant Lattice Boltzmann Large Eddy Simulations for Turbulent Channel Flows. Computation. 2022; 10(10):171. https://doi.org/10.3390/computation10100171
Chicago/Turabian StyleGehrke, Martin, and Thomas Rung. 2022. "Scrutinizing Dynamic Cumulant Lattice Boltzmann Large Eddy Simulations for Turbulent Channel Flows" Computation 10, no. 10: 171. https://doi.org/10.3390/computation10100171
APA StyleGehrke, M., & Rung, T. (2022). Scrutinizing Dynamic Cumulant Lattice Boltzmann Large Eddy Simulations for Turbulent Channel Flows. Computation, 10(10), 171. https://doi.org/10.3390/computation10100171