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Abstract: This technical paper outlines the predictive performance of a recently published dynamic
cumulant lattice Boltzmann method (C-LBM) to model turbulent shear flows at all resolutions. Em-
phasis is given to a simple strategy that avoids a frequently observed velocity overshoot phenomenon
near rigid walls when combining the C-LBM with an all-resolution (universal) wall function. The
examples included are confined to turbulent channel flow results for a variety of friction Reynolds
numbers within 180 and 50,000, obtained on a sequence of isotropic, homogeneous grids that feature
non-dimensional lattice spacings using inner coordinates from 4 to 2200. The results indicate that
adjusting the near-wall distance of the first fluid node, i.e., the intersection of the wall with the first
lattice edge, to the resolution provides a reasonably simple, robust, and accurate supplement to
the all-resolution C-LBM approach. The investigated wall function/C-LBM combination displays a
remarkable predictive performance for all investigated resolutions.

Keywords: lattice Boltzmann method; cumulant collision operator; turbulence simulation; DNS; LES;
VLES; wall function

1. Introduction

Significant progress has been achieved in engineering flow simulations. Nonetheless,
a central issue in computational fluid dynamics research refers to modeling turbulent
flows at high Reynolds numbers. The starting point of many efforts is the spatial and
(or) temporal variations of the resolution properties of the discrete model, caused by
either the flow dynamics and (or) local resolution differences due to limited computational
resources. Related developments aim at adaptive, hybrid simulation methods that connect
flow models ranging from classical, efficient statistical (Reynolds-) averaging strategies
(RANS) to partially scale-resolving large eddy simulations (LES) or even fully resolved
direct numerical simulations (DNS). This intention has promoted a range of grid refinement
and hybrid flow modeling practices. Prominent examples of the latter involve all-resolution
wall function approaches, e.g., [1–3], or hybrid RANS-LES methods, where the detached
eddy simulation [4,5] and related improvements [6–8] are perhaps the most widespread
industrialized strategies.

As an alternative to Navier–Stokes-based simulations, lattice Boltzmann methods
(LBMs) have recently gained enhanced interest by the technical flow simulation community,
e.g., [9–13]. The method computes the evolution of a set of particle distribution functions
(PDFs) in space and time which are used to reconstruct the flow field [14]. The benefit of
LBM refers to the separation of non-local and non-linear discretized expressions and the
related algorithmic simplicity, which promotes very efficient parallel implementations
on GPU and CPU systems [15–20]. Separating discretization aspects from flow physics
modeling is more challenging in an LBM than in a Navier–Stokes framework since both
aspects are related to the collision model that relaxes the PDFs towards their equilibrium
state. To a large extent, the employed collision operator governs the predictive performance
of an LBM simulation. An overview of recently suggested collision modeling strategies is
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beyond the scope of this paper and provided by Coreixas et al. [21]. The well-conditioned,
parameterized cumulant collision operator, suggested by Geier et al. [22], transforms the
PDFs into corresponding cumulant expressions, performs the relaxation cumulant space,
and subsequently translates the result back. Variants of the cumulant LBM were very
recently applied to a variety of turbulent flows, e.g., by [23–25]. It is particularly interesting
for its predictive prospects to cover a range of resolutions with the same computational
model [26]. The present authors have recently suggested two related modifications in an
attempt to improve modeling turbulent flows with an identical numerical approach for
a wide range of resolutions from DNS to very large eddy simulations (VLES) [27]. Both
modifications are resolution-sensitive and vanish in the respective fine grid limits. The
first one regularizes the higher (third-) order cumulant expressions and exclusively acts at
high wave numbers [28]. The second suggestion refers to a local, cumulant-based dynamic
subgrid scale model, which acts at lower wave numbers, gradually vanishes in the DNS
limit, and provides the necessary subgrid scale contributions for very coarse resolutions.
Along rigid boundaries, the modified cumulant model is coupled to the wall function of
Asmuth et al. [29] in combination with the boundary condition of Yu et al. [30] to comprise
a universal wall function; cf. Gehrke and Rung [27] for details.

Figure 1 displays exemplary mean flow (a) results, supplemented by (averaged)
resolved, viscous, and modeled turbulent shear stresses (b) obtained from the modi-
fied C-LBM approach for two simple channel flows at Reτ = H uτ/ν = 180 [31] and
Reτ = 2000 [32]. Here, ν is the fluid viscosity, H refers to the half channel height, and
uτ =

√
|τw|/ρ denotes the shear stress velocity, computed from the magnitude of the wall

shear stress |τw| and the fluid density ρ.

Figure 1. (a) Comparison of predicted non-dimensional mean velocity profiles u+ = u/uτ as
functions of the non-dimensional distance y+ = y uτ/ν returned by the modified C-LBM for NH = 24
along the channel half height (symbols), the DNS data of Kim et al. [31] (Reτ = 180) and the DNS data
of Bernardini et al. [32] (Reτ = 2000), indicated by solid lines. To improve the presentation, the mean
velocity profile for Reτ = 2000 is shifted by ∆u+ = 5 velocity units in vertical direction. (b) Evolution
of (averaged) resolved (solid/circles), viscous (dashed/squares), modeled (dotted/diamonds), and
total (black line) normalized shear stress contributions.

Both simulations are performed on a homogeneous, isotropic, Cartesian mesh us-
ing NH = 24 points per channel half height. The figure reveals a remaining issue of the
modified cumulant model near the wall for Reτ = 2000, where a velocity overshoot phe-
nomenon [27,29,33] is observed. For the higher Reynolds number, the resolved stresses
suffer from the missing dynamics of the wall function, and the predicted wall-adjacent
modeled stresses are too small. As a consequence, the gradient of the mean flow is over-
predicted near the wall to compensate for the underestimated turbulent stresses. Similar
results are displayed for other Reynolds numbers in [27] when the non-dimensional grid
spacing exceeds ∆x+ = ∆x uτ/ν & 20. Other recent publications, e.g., [34–37], that cover
developments in the simulation of turbulent channel flows at various Reynolds numbers,
applying different collision operators, wall function approaches, and turbulence models,
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also highlight the relevance of the overshoot issue and prove that this is an active field
of research.

The present technical paper tries to convey the merits of a simple (virtual) wall
positioning method that adjusts the location of the wall between the solid node and the
first fluid node to the resolution and thereby neutralizes the overshoot phenomenon.
Supplementarily, the C-LBM approach published in [27] is assessed for very high Reynolds
numbers and coarse resolutions that reach down to 45 grid points between the top and
bottom walls of a channel flow at ReB = H uB/ν ≈ 1.7 × 106, respectively, where uB
denotes to the average (bulk) velocity. Moreover, we also provide guidelines on meaningful
resolution limits.

The remainder of the paper is structured as follows: Section 2 outlines the numerical
model, summarizes the LES approach, and illustrates the test case in brief. Subsequently,
Section 3 describes the suggested wall treatment modification and discusses the results in
comparison to the standard approach. The final conclusions are drawn in Section 4.

2. Computational Model
2.1. Numerical Method

The study employs a graphics processing unit (GPU)-based lattice Boltzmann imple-
mentation for the simulation of incompressible fluid flows [15,26–28,38,39]. To save space,
the general approach is only briefly described, and the interested reader is referred to the
rich literature on the fundamentals of LBM, e.g., [14,40–43]. The discrete approximation
comprises two steps, viz.,

f ∗ijk(xxx, t) = fijk(xxx, t) + Ωijk [collision step], (1)

fijk(xxx + eeeijk∆t, t + ∆t) = f ∗ijk(xxx, t) [propagation step]. (2)

Herein, fijk are the dependent variables of LBMs and represent particle distribution
functions (PDFs), which describe the probability of a particle located at position xxx and
time t to move in the discrete direction eeeijk. The latter denotes a directional speed ma-
trix eeeijk = c (i, j, k)ᵀ, with {(i, j, k)ᵀ ∈ N3

0 | i, j, k ∈ {−1; 0; 1}}, and restricts the particle
advection (2) with a constant lattice speed c to the immediate discrete neighbor nodes
during a discrete time step ∆t.

As indicated by Figure 2a, the simulations rest upon a regular D3Q27 [44] stencil
and employ a unit spatial (∆x) and temporal (∆t) spacing together with a unit lattice
velocity [45] of c = ∆x/∆t = 1. The macroscopic flow properties are recovered from the
PDFs by ρ = ∑ijk fijk and uuu = (u, v, w)ᵀ = (∑ijk eeeijk fijk)/ρ.

Figure 2. (a) Illustration of the employed D3Q27 discretization. (b) Dimensions of the investigated
channel flow featuring isosurface snapshots of the Q-criterion [46], colored by the streamwise (x-
direction) velocity component for ReB ≈ 1.7 × 106 on a homogeneous Cartesian grid featuring
approximately 27 million lattice nodes (H/ΛH = NH = 48).

2.1.1. Unit Conversion

LBMs are commonly weakly compressible approaches and require the specification
of a Mach number. Moreover, all properties are computed in non-dimensional form and
require a conversion from physical SI (index SI) to non-dimensional LB units (without
index). To this end, the Mach number is related to the (averaged) maximum, i.e., the
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centerline, velocity uC of the channel, which is approximately obtained from the bulk
velocity via uC = 1.16 uB:

Ma =

(
uC
cs

)
SI
=

(
uC
√

3
c

)
c=1⇒ uB =

Ma
1.16
√

3
. (3)

Here, (cs)SI is the speed of sound in SI units which converts to c/
√

3 with c = 1 in
non-dimensional LB units. The entrance parameter of all present simulations is the fric-
tional Reynolds number Reτ . Applying (3) and Dean’s [47] correlation (ReB ≈ 7.32 Re8/7

τ ),
the scaling factors Λφ that transfer SI in LB units, i.e., φ = φSI/Λφ, read

ΛH =
H

NH
[m], Λu ≈ 14.71

νSI

H
Re8/7

τ

Ma
[m/s], Λt =

ΛH
Λu

[s], Λν = ΛH Λu [m2/s]. (4)

Hence, the simulation is uniquely specified by the SI values for H [m] and νSI [m2/s],
the discretization parameter NH , as well as the similarity parameters Reτ and Ma. As
outlined above, the spatial and temporal step size as well as the lattice velocity in non-
dimensional LB units read ∆x = ∆t = c = 1. The non-dimensional shear viscosity follows
from ν = νSI/Λν.

2.1.2. Collision Model

During the collision step (1), the deviation of the incoming pre-collisional PDFs
fijk(xxx, t) from an equilibrium state f eq

ijk is relaxed by the collision operator Ωijk, which
returns the post-collisional PDFs f ∗ijk(xxx, t). Different options are conceivable, which range

from the simple single relaxation time (τ = 3ν/c2 + ∆t/2) approach [48], i.e., Ωijk =

−∆t/τ ( fijk − f eq
ijk ) = −∆t ω( fijk − f eq

ijk ), to more involved two- [49] or multiple-relaxation-
time methods; see for example [50–52]. Some sophisticated approaches transform the PDFs
prior to the collision and impose the relaxation in the transformed space. In the present
study, the collision proceeds in cumulant [53] space, and the relaxation is performed for
cumulant expressions Cαβγ [16,22] that result from the transformation of the PDFs ( fijk)
into cumulants (Cαβγ), viz.,

C∗αβγ = ωαβγCeq
αβγ + (1−ωαβγ)Cαβγ. (5)

The sum of the Greek indices correlates with the cumulants’ order and reaches from
zero (C000) to six (C222), i.e., α, β, γ ∈ (0, 1, 2). Related details and an outline of the cumulant
theory can be found in the seminal work of Geier et al. [16]. The transformation from PDF
to cumulant space employs central moments that serve as an intermediate step, i.e., ( fijk)
� central moments� cumulants (Cαβγ). The present implementation corresponds strictly
to Appendix B in [27], and details are again omitted to save space. Equation (5) initially
involves ten linear independent relaxation rates, which we denote by ωχ to simplify the
content of this technical paper (details can be found in [16,27]). These non-dimensional
rates need to be assigned to values in a realizable range of ωχ ∈ [0; 2]. The two lower-order
relaxation rates are related to the shear (ω1) and the bulk (ω2) viscosity. In accordance with
other approaches, the shear viscosity’s related rate follows from

ω1 =
2c2

6ν + c2∆t
c=∆t=1
=

2
6ν + 1

. (6)

The value for ω2 is usually simply assigned to unity, which recovers the equilibrium
state in (5) and improves the stability, cf. [16]. Following [22] and our previous work [27,28],
we assign the rates ω{6,..,10}, addressing the fourth-, fifth- and sixth-order cumulants’
relaxation, to unity, to improve the stability of the simulation. The remaining three third-
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order relaxation rates are parameterized according to the suggestion of Geier et al. [22] and
related to their respective values ω1, i.e.,

ω3 =
8
(
2ω2

1 − 3ω1 − 2
)

7ω2
1 − 14ω1 − 8

, ω4 =
8
(
4ω2

1 − 15ω1 + 14
)

9ω2
1 − 50ω1 + 56

, ω5 =
24
(
3ω3

1 − 13ω2
1 + 12ω1 + 4

)
29ω3

1 − 130ω2
1 + 152ω1 + 48

. (7)

These parameterized rates vanish in the high Reynolds number limit due to ω1 → 2,
which adversely influences the numerical stability [22,28]. Hence, the parameterization (7)
needs to be regularized. The present regularization refers to the above mentioned sug-
gestion published in [27]. Since the linear combinations of cumulant expressions are
preferentially used for the relaxation, the regularization distinguishes between respective
cumulant expressions ω C{3;4;5},i, viz.,

ω C{3,4},1 = ω{3,4}(1 + Cω |C120 ± C102|), ω C{3,4},2 = ω{3,4}(1 + Cω |C210 ± C012|),

ω C{3,4},3 = ω{3,4}(1 + Cω |C201 ± C021|), ωC5 = ω5(1 + Cω |C111|) , (8)

where the subscript 3 (4) refers to the summation (subtraction) of the cumulant expressions
and Cω is a resolution-sensitive parameter, which is assigned to Cω = Re∆x/(10 Ma)
depending on the cell Reynolds number, Re∆x = (uB ∆x/ν)SI = ∆x+ ReB/Reτ , and the
Mach number, Ma = 1.16

√
3uB. For the in-depth details of the underlying collision step in

the cumulant space, the reader is referred to Section II.E and Appendix B of [27].

2.1.3. Subgrid Scale Model

The simulation of significantly under-resolved turbulent flows utilizes a Smagorinsky
approach to model the influence of subgrid stresses with an eddy viscosity, νt = (CS∆x)2 S.
The eddy viscosity involves the grid spacing ∆x, a Smagorinsky parameter CS [54] and a
strain-rate measure S2 = 0.5(∇∇∇uuu+uuu∇∇∇) · ·(∇∇∇uuu+uuu∇∇∇). Unlike the classical approach, we use
a resolution-dependent formulation [27] and employ a dynamic Smagorinsky parameter
that is linked to the third-order cumulant expression |C210 + C012| and is parameterized by
the cell Reynolds and Mach number to account for the resolution:

CS = |C210 + C012| min(20, 0.35
√

Re∆x)/Ma. (9)

The eddy viscosity enters an effective viscosity νe = (ν + νt) that replaces the fluid
viscosity in the definition of ω1, cf. Equation (6). It is to be noted that an upper threshold
is set to CS = 20/Ma, which, e.g., comes into effect for Re∆x ≈ 3250 or ∆x+ ≈ 130 for
Ma = 0.1. Moreover, the influence of the SGS on the parameterization of the relaxation
rates ω{3,4,5} (7) is neglected, i.e., the classical ω1 definition (6) is employed in Equation (7),
since related differences are deemed negligible [27].

2.1.4. Suggested Model

The results displayed in this paper utilize all features addressed in Sections 2.1.2 and
2.1.3 in addition to the wall function modification outlined in Section 3. The resolution
sensitivity of the suggested combination of regularization, the subgrid scale model, and the
universal wall function allows us to activate these three features irrespective of the resolu-
tion quality without additional user input, i.e., for DNS, LES, and VLES simulations close
to classical URANS.

2.2. Test Case and Parameter Space

The dimensions of the investigated channel are 6πH in streamwise (x), 2πH in span-
wise (z), and 2H in wall-normal direction (y), cf. Figure 2b. Six Reynolds numbers are
employed to analyze the capabilities of the C-LBM, i.e., Reτ = {180, 550, 2000, 5200, 20,000,
50,000}. The investigations are performed on various grids. They are characterized by
the resolution of the channel half height with NH nodes and support investigating a large
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range of non-dimensional resolutions, i.e., 4 . ∆x+ = ∆x uτ/ν . 2200. As indicated by
Table 1, each Reynolds number is investigated on four grids that coarsen from dark green
to red. The selected resolutions aim at an approximately equal change in ∆x+ while also
considering resolutions of particular interest.

Table 1. Summary of the investigated grids and Reynolds numbers as well as their color codes used
in the following mean velocity plots. NH denoting the number of discrete nodes per channel half
height and (rounded) ReB data correspond to Dean’s correlation (ReB ≈ 7.32 Re8/7

τ ). Furthermore,
the resulting non-dimensional grid spacings ∆x+(Reτ , NH) are listed.

Reτ 180 550 2000 5200 20,000 50,000
ReB 2800 9900 43,400 129,200 602,500 1,717,000

NH ∆x+ NH ∆x+ NH ∆x+ NH ∆x+ NH ∆x+ NH ∆x+

n 48 3.8 29 19 36 56 24 220 36 555 48 1040
s 24 7.5 24 23 24 83 18 290 29 690 36 1390
l 18 10 16 34 17 118 14 370 24 825 29 1740
u 12 15 12 46 12 167 12 430 21 960 23 2170

The Mach number is assigned to Ma = 0.1 in response to previous investigations [27,28].
Each simulation comprises 200 flow passes T = 6πH/uB through the domain. An initial
phase of 50 T is followed by a moving average computation of the mean flow and the
contributions of the viscous and modeled stresses, which usually also span 50 T. Once the
mean velocity is converged, the Reynolds stresses are evaluated during the final 100 T.

3. Results and Discussion

The present results represent a follow-up study of a recently published paper [27],
where the regularized dynamic cumulant lattice Boltzmann (LES) method summarized in
Section 2.1 was applied to simulate turbulent channel flows on a homogeneous, Cartesian
lattice. As indicated by selected results shown in Figure 1, fair average velocities, Reynolds
stresses, spectra, and correlation lengths are reported for ReB ∈ [2800, 130,000] by the
same LBM formulation in [27]. An exception refers to significant overestimated near-
wall gradients observed for the higher Reynolds numbers, which might deteriorate the
assessment of engineering quantities of importance, e.g., heat fluxes. The deficit is deemed
to be related to the interaction of the wall function with the cumulant-based subgrid stress
model. In conclusion, a simple correction is sought that alleviates these deficits.

To understand the rationale of the suggested correction, it is essential to note that the
second fluid node serves as a reference location for constructing the wall function. The
latter iteratively computes a consistent shear stress τw in line with the velocity prediction.
Thus, the related (instantaneous) shear stress velocity uτ =

√
|τw|/ρ) provides a valid

< y+2 , u+
2 > combination (with y+i = yi uτ/ν and u+

i = ui/uτ) at the second fluid node for
a given wall distance y2 and a simulated (instantaneous) velocity u2 at this node [27].

We suggest manipulating the non-dimensional wall distance of the first fluid node y+1
from its standard value of y+1 = ∆x+/2 virtually, i.e., without changing the actual grid, cf.
the sketch in Figure 3a. Since no deficits occur for an adequate resolution of the near-wall
regime, no manipulation of the wall distance is needed for ∆x+ ≤ 15. A comprehensive
parameter study is performed for a wide range of Reynolds numbers Reτ ∈ [550, 50,000] to
compile the appropriate wall location shift. As indicated by the symbols in Figure 3, a fair
correlation for an adequate near-wall distance of the first fluid node reads

y+1 (∆x+) =

{
0.5 ∆x+ , ∆x+ ≤ 15
[0.15 (1 + 35/∆x+)]∆x+ , ∆x+ > 15

. (10)

On the one hand, this virtual shift of the y+-origin reduces the wall distance. On the
other hand, the relative reduction decreases with increasing distance, and the manipulation
substantially shifts the wall distance of the first fluid node to the left. At the same time,
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the reduced distance increases the third-order cumulant expression at the first fluid node
inside the Smagorinsky parameter CS (9) roughly linearly for high Reynolds number flows,
cf. Figure 4b and the derivation of the regularization term in [27].

Figure 3. Evolution of the suggested non-dimensional wall distance of the wall-adjacent fluid node
y+1 in normalized (a) and non-normalized (b) format, depending on the grid resolution ∆x+ as
described in Equation (10). Colored dots display evaluated discrete y+1 optima of each Reynolds
number and grid. Furthermore, the reasonable maximum resolution for each of the underlying
Reynolds numbers is illustrated by colored dashed vertical lines.

This yields an increase in the eddy viscosity νt = C2
s ∆2S that approximately scales

with C2
S , as indicated by Figures 4a and 5a.

Figure 4. (a) Comparison of the normalized predicted (averaged) eddy viscosity obtained from a
centered wall location (q = 0.5; solid lines) and an adjusted wall location (dotted lines) for Reτ = {550,
2000, 5200, 20,000, 50,000} on the NH = 24 grid. (b) Increase in the (averaged) cumulant expression
|C210 + C012|1 at the first fluid node as a function of the wall location parameter q = y+1 /∆x+. Error
bars refer to ∆|C210 + C012|1 ± 0.75%. Colored verticals correspond to the modified q-values on
the NH = 24 grid in (a), whereas further data points refer to Reτ = 550 simulations employing
NH = {12, 16, 19, 29, 32} from left to right.

As indicated by cf. Figure 6a, the velocity gradient between the solid node and the
reference second fluid node, i.e., the centered velocity gradient at the first fluid node, does
virtually not change. The latter is easily understood by the example given in Figures 5 and 6,
where |τmod| = νt S = C2

S ∆2 S2 increases by 24% in response to a 23% increase in the eddy
viscosity and an 11% augmentation of CS. The unaltered strain rate at the first fluid node is
crucial to control the modeled stress by the exclusive change in the third-order cumulant
expression |C210 + C012|1 at the first fluid node in response to the shift in the wall location,
while leaving the grid and the numerical approach unchanged.

It is also interesting to note that the influence of the suggested wall positioning
modification is almost exclusively restricted to the computed eddy viscosity (and the
cumulants) at the first fluid node, cf. Figure 4a, and therefore can be interpreted as a local
adjustment of the subgrid scale model to the wall function.
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Figure 5. (a) Increase in the normalized (averaged) eddy viscosity and (b) the related (averaged)
cumulant expression at the first fluid node in response to a shift in the wall position computed from
Equation (10) for Reτ = 2000 and ∆x+ = 83 (NH = 24).

Figure 6. (a) Non-dimensional mean velocity profiles for Reτ = 2000 on a grid featuring NH = 24
and ∆x+ = 83. The red velocity graph coincides with the red graph in Figure 1a and refers to the
standard grid layout with y+1 (∆x+) = 0.5 ∆x+ 6= y+1 (∆x+, Reτ). The green curve depicts results
from the suggested y+1 (∆x+, Reτ) = 0.15∆x+ (1 + 35/∆x+) manipulation, cf. Equation (10). (b) The
overshoot vanishes when the modeled shear stress increases due to an increase in the eddy viscosity,
as displayed by the normalized (averaged) τi partition pathlines.

Figures 7 and 8 display the predicted non-dimensional mean velocity profiles of the
three lower and higher Reynolds numbers, respectively. All results are obtained with the
adjustment of the wall location according to Equation (10).

Since all wall-adjacent nodes are located above the buffer-layer for the higher Reynolds
numbers displayed in Figure 8, the lower bound of the abscissa is set to y+1 = 30 in order to
emphasize the logarithmic layer and the wake flow. The characteristic of the logarithmic
layer is in fair predictive agreement with the parameters found by Nikitin et al. [55] for
turbulent channel flows up to Reτ = 80,000 (κ = 0.41 and B = 5.2).

Further analysis of the mean flow profiles reveals a sensitivity of the present C-LBM
to predict wake flows [56] depending on the resolution. In line with previous LES or DES
simulations, e.g., those of Cabot et al. [57] or Keating and Piomelli [58], the present C-LBM
also portrays an attenuation of the wake flow when the resolution is coarsened. This is
caused by a weaker reduction in the resolved stresses in the outer regime of the boundary
layer, as illustrated in Figure 9.

Mind that wake flow usually occurs beyond a critical Reynolds number, e.g., Reτ ≥
1000 [59], and hence no substantial grid sensitivity is observed for the two lower Reynolds
numbers in Figure 7, and no significant change in the reduction in resolved stress towards
the exterior boundary layer region is displayed in Figures 9a,b when the grid is coarsened.
The analysis of the wake prediction yields a heuristic criterion for the maximum grid
coarseness through
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∆x+max(Reτ) =

{
Reτ/10 , Reτ . 104 ( to capture wake )
10
√

Reτ , Reτ > 104 ( to capture wake and maintain the validity of (10) )
. (11)

For the investigated Reynolds numbers Reτ = {180, 550, 2000, 5200, 20,000, 50,000},
the coarsest resolutions derived from Equation (11) read ∆x+max(Reτ) = {18, 55, 200, 520,
1410, 2240}, which are close to the coarsest (u) investigated grids in Table 1.

 5

 10

 15

 20

 25

 30

 1  10  100  1000

u
+
  

 [
 -

 ]

y
+
   [ - ]

u
+
= y

+

Re
τ
 = 180  
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τ
 = 550  
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τ
 = 2000

Figure 7. Non-dimensional mean velocity profiles for three lower Reynolds numbers. Solid lines
refer to reconstructions of discrete reference data sets published by Kim et al. [31] for Reτ = 180 and
Bernardini et al. [32] for Reτ = {550, 2000} as given in Gehrke and Rung [27]. The color codes of the
symbols are given in Table 1. To improve the comparison, the profile for Reτ = 550 [2000] is vertically
shifted by ∆u+ = 3 [6].

 15

 20
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 100  1000  10000

u
+
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 -
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y
+
   [ - ]

Re
τ
 = 5200  

Re
τ
 = 20000
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Figure 8. Non-dimensional mean velocity profiles for the three higher Reynolds numbers. With
ascending Reτ the characteristic parameters of the logarithmic layer u+(y+) = ln(y+)/κ + B are:
the von Kármán constant reads κ(Reτ) = {0.40, 0.41, 0.41} and the constants are B(Reτ) = {4.9, 4.9,
5.0}. The color codes of the symbols are given in Table 1. To improve the comparison, profiles for
Reτ = 20,000 [50,000] are vertically shifted by ∆u+ = 4 [8].
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Figure 9. (a–f) Comparison of (averaged) non-dimensional resolved (solid/circles), viscous
(dashed/squares), and modeled (dotted/diamonds) shear stress contributions extended by the
linear total stress relation τtot/τw = 1− y/H (solid black line) for all six investigated Reτ with four
grids each.

4. Conclusions

The paper scrutinizes the predictive performance of a D3Q27 cumulant-based LB
method to capture turbulent channel flows. Emphasis is given to assessing a unified com-
putational model utilizing adaptive, dynamic regularization and subgrid scale components
based on cumulant expressions combined with a universal wall treatment. The approach
aims at resolution independence and is based on a previously published suggestion of the
authors [27]. The essential building blocks and main advantages of this strategy are (a) an
alternative regularization that dissipates the kinetic energy of the large wave numbers
and accurately computes flows with fine to moderate resolutions (∆x+ . 20) and (b) a
third-order cumulant expression to formulate a dynamic Smagorinsky-type SGS model
that acts on smaller wave numbers. Both elements are sensitized to the resolution through
the cell Reynolds (spatial) and Mach numbers (temporal) and seamlessly vanish in the
fine-grid limit.

A remaining deficit refers to overshoot issues due to the missing interplay between
the wall function and the SGS model nearby the wall. Related misinterpretations of the
averaged flow field might yield a substantially wrong prediction of the wall shear stress and
heat transfer rate at higher Reynolds numbers of engineering interest. Depending on the
local flow situation, the modeled shear stress contributions are up to 30% wrong in response
to the overshoot phenomenon. The problem is particularly prominent for ∆x+1 & 20. The
present paper proposes an adjustment of a universal wall function that comes at negligible
computational expenses and favorably influences the near-wall cumulant expressions.

To render the predictive benefits, attention is devoted to a comprehensive range of bulk
Reynolds numbers ReB ∈ [3000, 1.7× 106] on grids between 4.5× 105 and 27× 106 nodes
that feature resolutions of ∆x+ ∈ [4, 2200]. The results indicate that the unified model is
able to capture all investigated flows without further adjustments or user input. Future
research could consider implementing the approach for complex geometries to predict
separated engineering shear flows.
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