Potential Issues in the Conservation of Bone and Teeth in Maritime Archaeology
Abstract
1. Introduction
2. Maritime Conservation
3. Bone and Teeth in Maritime Conservation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bass, G.F. The Development of Maritime Archaeology. In The Oxford Handbook of Maritime Archaeology; Catsambis, A., Ford, B., Hamilton, D.L., Eds.; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Green, J. Maritime Archaeology: A Technical Handbook; Elsevier: San Diego, CA, USA, 2004. [Google Scholar]
- Sperry, J. More than Meets the Eyes? Archaeology Underwater, Technology, and Interpretation. Public Archaeol. 2009, 8, 20–34. [Google Scholar] [CrossRef]
- Muckelroy, K. Maritime Archaeology; Cambridge University Press: Cambridge, UK, 1978. [Google Scholar]
- Hamilton, D.L. Conservation of Cultural Materials from Underwater Sites. In Science and Technology in Historic Preservation; Williamson, R.A., Nickens, P.R., Eds.; Springer Science + Business Media: New York, NY, USA, 2000; pp. 193–227. [Google Scholar]
- Hocker, E.; Almkvist, G.; Sahlstedt, M. The Vasa experience with polyethylene glycol: A conservator’s perspective. J. Cult. Herit. 2012, 13, S175–S182. [Google Scholar] [CrossRef]
- Jones, M. Introduction. In For Future Generations: Conservation of a Tudor Maritime Collection; Jones, M., Ed.; The Mary Rose Trust Ltd.: Portsmouth, UK, 2003. [Google Scholar]
- MacLeod, I.D. Conservation of waterlogged timbers from the Batavia 1629. Bull. Aust. Inst. Marit. Archaeol. 1990, 14, 1–8. [Google Scholar]
- Pearson, C. Preface. In Conservation of Marine Archaeological Artefacts; Pearson, C., Ed.; Butterworths: London, UK, 1987. [Google Scholar]
- Caple, C. Introduction: The challenges of archaeological conservation. In Studies in Archaeological Conservation; Caple, C., Garlick, V., Eds.; Routledge: Oxon, London, UK, 2021. [Google Scholar]
- Hamilton, D.L. Methods of Conserving Archaeological Material from Underwater Sites; Nautical Archaeology Program Texas A&M University: College Station, TX, USA, 1999. [Google Scholar]
- Gherardi, F.; Stewart, H. A Multi-Analytical Protocol for Decision Making to Study Copper Alloy Artefacts from Underwater Excavations and Plan Their Conservation. Coatings 2022, 12, 1640. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Richards, V.L. Australia’s privately held historic shipwreck collections: A current overview and proposed management strategies. Bull. Aust. Inst. Marit. Archaeol. 2012, 36, 77–88. [Google Scholar]
- Buys, S.; Oakley, V. Preventive care of ceramics. In The Conservation and Restoration of Ceramics; Buys, S., Oakley, V., Eds.; Routledge: London, UK, 1996. [Google Scholar]
- Davison, S. Deterioration of glass. In Conservation and Restoration of Glass; Davison, S., Ed.; Butterworth-Heinemann: Oxford, UK, 2003; pp. 169–198. [Google Scholar]
- Broda, M.; Callum, A.S.H. Conservation of Waterlogged Wood-Past, Present and Future Perspectives. Forests 2021, 12, 1193. [Google Scholar] [CrossRef]
- Watson, J. The freeze-drying of wet and waterlogged materials from archaeological excavations. Phys. Educ. 2004, 39, 171–176. [Google Scholar] [CrossRef]
- Florian, M.-L.E. Deterioration of organic materials other than wood. In Conservation of Marine Archaeological Artefacts; Pearson, C., Ed.; Butterworths: London, UK, 1987. [Google Scholar]
- Chen, X.Q.; Xia, K.; Hu, W.; Cao, M.; Deng, K.; Fang, S. Extraction of underwater fragile artifacts: Research status and prospect. Herit. Sci. 2022, 10, 9. [Google Scholar] [CrossRef]
- Magni, P.A.; Guareschi, E.E. How centuries-old bones from Australia’s historic shipwrecks can help us solve crimes. In The Conversation; The Conversation Media Group Ltd.: Victoria, Australia, 2022. [Google Scholar]
- Dennison, K.J.; Kieser, J.A.; Buckeridge, J.S.; Bishop, P.J. Post mortem cohabitation-shell growth as a measure of elapsed time: A case report. Forensic Sci. Int. 2004, 139, 249–254. [Google Scholar] [CrossRef]
- Jones, M. Conservation of Textiles. In For Future Generations: Conservation of a Tudor Maritime Collection; Jones, M., Ed.; The Mary Rose Trust Ltd.: Portsmouth, UK, 2003; pp. 101–105. [Google Scholar]
- Jenssen, V. Conservation of wet organic artefacts excluding wood. In Conservation of Marine Archaeological Artefacts; Pearson, C., Ed.; Butterworths: London, UK, 1987. [Google Scholar]
- Fors, Y.; Sandström, M. Sulfur and iron in shipwrecks cause conservation concerns. Chem. Soc. Rev. 2005, 35, 399–415. [Google Scholar] [CrossRef]
- Grattan, D.W. A Practical Comparative Study of Several Treatments for Waterlogged Wood. Stud. Conserv. 1982, 27, 124–136. [Google Scholar]
- Godfrey, I.M.; Smith, N.K. Conservation of degraded rope from marine archaeological sites. AICCM Bull. 1990, 16, 93–107. [Google Scholar] [CrossRef]
- Bartoš, L.; Sanders, D. The Sail of the Swedish Merchantman Jeanne-Élisabeth, Wrecked off Montpellier, France, in 1755. Int. J. Naut. Archaeol. 2012, 41, 67–83. [Google Scholar] [CrossRef]
- Cartajena, I.; López, P.; Carabias, D.; Morales, C.; Vargas, G.; Ortega, C. First evidence of an underwater Final Pleistocene terrestrial extinct faunal bone assemblage from Central Chile (South America): Taxonomic and taphonomic analyses. Quat. Int. 2013, 305, 45–55. [Google Scholar] [CrossRef]
- Benjamin, J.; Bonsall, C.; Pickard, C. Submerged Prehistory; Oxbow Books: Oxford, UK, 2011; p. 336. [Google Scholar]
- González, A.G.; Sandoval, C.R.; Mata, A.T.; Sanvicente, M.B.; Acevez, E. The Arrival of Humans on the Yucatan Peninsula: Evidence from Submerged Caves in the State of Quintana Roo, Mexico. Curr. Res. Pleistocene 2008, 25, 1–24. [Google Scholar]
- Martín-Perea, D.M.; Morales, J.; Cantero, E.; Courtenay, L.A.; Fernández, M.H.; Domingo, M.S. Taphonomic analysis of Batallones-10, a Late Miocene drought-induced mammalian assemblage (Madrid basin, Spain) within the Cerro de los Batallones complex. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 578, 110576. [Google Scholar] [CrossRef]
- Kono, T.; Sakae, T.; Nakada, H.; Kaneda, T.; Okada, H. Confusion between Carbonate Apatite and Biological Apatite (Carbonated Hydroxyapatite) in Bone and Teeth. Minerals 2022, 12, 170. [Google Scholar] [CrossRef]
- White, T.D.; Folkens, P.A. The Human Bone Manual; Elsevier Academic: Amsterdam, The Netherlands; Boston, MA, USA, 2005. [Google Scholar]
- Berkovitz, B.K.; Shellis, R.P. The Teeth of Mammalian Vertebrates; Academic Press, an Imprint of Elsevier: London, UK, 2018. [Google Scholar]
- Weiner, S. Microarchaeology: Beyond the Visible Archaeological Record; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Noakes, S.; Garrison, E.; McFall, G. Underwater Paleontology: Recovery of a prehistoric Whale mandible offshore Georgia. In Proceedings of the American Academy of Underwater Sciences 28th Symposium, Atlanta, GA, USA, 28 September–2 October 2009. [Google Scholar]
- Snoeck, C.; Lee-Thorp, J.A. Advances in the study of diagenesis of fossil and subfossil bones and teeth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 545, 109628. [Google Scholar] [CrossRef]
- Trueman, C.N.; Benton, M.J.; Palmer, M.R. Geochemical Taphonomy of Shallow Marine Vertebrate Assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 197, 151–169. [Google Scholar] [CrossRef]
- Maurer, A.F.; Barrulas, P.; Person, A.; Mirão, J.; Dias, C.B.; Boudouma, O.; Segalen, L. Testing LA-ICP-MS analysis of archaeological bones with different diagenetic histories for paleodiet prospect. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 534, 109287. [Google Scholar] [CrossRef]
- Matthiesen, H.; Eriksen, A.M.H.; Hollesen, J.; Collins, M. Bone degradation at five Arctic archaeological sites: Quantifying the importance of burial environment and bone characteristics. J. Archaeol. Sci. 2021, 125, 105296. [Google Scholar] [CrossRef]
- Guareschi, E.E.; Nicholls, P.K.; Evans, N.J.; Barham, M.; McDonald, B.J.; Magni, P.A.; Tobe, S.S. Bone diagenesis in the marine environment-I: Characterization and distribution of trace elements in terrestrial mammalian bones recovered from historic shipwrecks. Int. J. Osteoarchaeol. 2021, 32, 509–523. [Google Scholar] [CrossRef]
- Orton, D.C. Taphonomy and interpretation: An analytical framework for social zooarchaeology. Int. J. Osteoarchaeol. 2012, 22, 320–337. [Google Scholar] [CrossRef]
- Papakonstantinou, N.; Booth, T.; Triantaphyllou, S. Human remains under the microscope of funerary taphonomy: Investigating the histological biography of the decaying body in the prehistoric Aegean. J. Archaeol. Sci. Rep. 2020, 34, 102654. [Google Scholar] [CrossRef]
- Guarino, F.M.; Angelini, F.; Vollono, C.; Orefice, C. Bone preservation in human remains from the Terme del Sarno at Pompeii using light microscopy and scanning electron microscopy. J. Archaeol. Sci. 2006, 33, 513–520. [Google Scholar] [CrossRef]
- Brönnimann, D.; Portmann, C.; Pichler, S.L.; Booth, T.J.; Röder, B.; Vach, W.; Schibler, J.; Rentzel, P. Contextualising the dead—Combining geoarchaeology and osteo-anthropology in a new multi-focus approach in bone histotaphonomy. J. Archaeol. Sci. 2018, 98, 45–58. [Google Scholar] [CrossRef]
- Keenleyside, A.; Song, X.; Chettle, D.R.; Webber, C.E. The Lead Content of Human Bones from the 1845 Franklin Expedition. J. Archaeol. Sci. 1996, 23, 461–465. [Google Scholar] [CrossRef]
- Carver, M. Excavation Methods in Archaeology. In Encyclopedia of Global Archaeology; Smith, C., Ed.; Springer New York: New York, NY, USA, 2014; pp. 2706–2714. [Google Scholar]
- Bowens, A. Underwater Archaeology: The NAS Guide to Principles and Practice, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 1–226. [Google Scholar]
- Oxley, I. Numbering and Processing in Before the Mast: Life and Death Aboard the Mary Rose; Gardiner, J., Allen, M.J., Eds.; Oxbow Books: Oxford, UK, 2021. [Google Scholar]
- Jones, M. Conservation of Ivory, Horn, Leather and Bone. In For Future Generations: Conservation of a Tudor Maritime Collection; Jones, M., Ed.; The Mary Rose Trust Ltd.: Portsmouth, UK, 2003; pp. 101–105. [Google Scholar]
- Selwyn, L.; Tse, S. The chemistry of sodium dithionite and its use in conservation. Stud. Conserv. 2008, 53, 61–73. [Google Scholar] [CrossRef]
- Godfrey, I.M.; Kasi, K.; Schneider, S.; Williams, E. Iron removal from waterlogged ivory and bone. In Proceedings of the 8th ICOM Group on Wet Organic Archaeological Materials Conference, Stockholm, Sweden, 11–15 June 2001. [Google Scholar]
- Abdel-Maksoud, G.; Awad, H.; Rashed, U.M.; Elnagar, K. Preliminary study for the evaluation of a pulsed coaxial plasma gun for removal of iron rust stain from bone artefacts. J. Cult. Herit. 2022, 55, 128–137. [Google Scholar] [CrossRef]
- Woolley, L. Digging Up the Past; Penguin Books: London, UK, 1954. [Google Scholar]
- Museum, B. How to Observe in Archaeology: Suggestions for Travellers in the Near and Middle East; Trustees of the British Museum: London, UK, 1920. [Google Scholar]
- Hrdlička, A. Directions for Collecting Information and Speciments for Physical Anthropology; US Government Printing Office: Washington, DC, USA, 1904. [Google Scholar]
- López-Polín, L. Possible interferences of some conservation treatments with subsequent studies on fossil bones: A conservator’s overview. Quat. Int. 2012, 275, 120–127. [Google Scholar] [CrossRef]
- Horie, C.V. Materials for Conservation; Butterworth-Heinemann: Oxford, UK, 2010. [Google Scholar]
- Pagels, Z.D. Why did the Chicken cross the Ocean: An Analysis of Faunal Remains from the Emanuel Point Shipwrecks. J. Stud. Res. 2019. [Google Scholar] [CrossRef]
- Rowley-Conwy, E. Treatment of a Block-Lifted Chicken Skeleton in Studies in Archaeological Conservation; Caple, C., Garlick, V., Eds.; Routledge: London, UK, 2020. [Google Scholar]
- Ellison, J. Conservation Project: The Stengade Double Grave, Langeland Museum, Denmark in Studies in Archaeological Conservation; Caple, C., Garlick, V., Eds.; Routledge: London, UK, 2020. [Google Scholar]
- Turner-Walker, G. Degradation pathways and conservation strategies for ancient bone from wet anoxic sites. In Proceedings of the 10th Triennial Meeting of the ICOM-CC Working Group for Wet Organic Archaeological Materials, Amsterdam, The Netherlands, 10–15 September 2007. [Google Scholar]
- Stone, T.T.; Dickel, D.N.; Doran, G.H. The Preservation and Conservation of Waterlogged Bone from the Windover Site, Florida: A Comparison of Methods. J. Field Archaeol. 1990, 17, 177–186. [Google Scholar]
- Mays, S. Human remains in marine archaeology. Environ. Archaeol. 2008, 13, 123–133. [Google Scholar] [CrossRef]
- Perez-Alvaro, E. Shipwrecks and graves: Their treatment as intangible heritage. Int. J. Intang. Herit. 2022, 17, 184–195. [Google Scholar]
- MacLeod, I.D. Shipwreck graves and their conservation management. AICCM Bull. 2008, 31, 5–14. [Google Scholar] [CrossRef]
- Waldron, T. Palaeopathology, illustrat ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2009. [Google Scholar]
- Ortner, D.J. Identification of Pathological Conditions in Human Skeletal Remains, 2nd ed.; Academic Press: Cambridge, MA, USA, 2002; p. 645. [Google Scholar]
- Pinhasi, R.; Mays, S. Advances in Human Palaeopathology; John Wiley & Sons: Hoboken, NJ, USA; Chichester, UK, 2008. [Google Scholar]
- Willis, L.M.; Boehm, A.R. Fish bones, cut marks, and burial: Implications for taphonomy and faunal analysis. J. Archaeol. Sci. 2014, 45, 20–25. [Google Scholar] [CrossRef]
- Marshall, R.A.; Mandell, J.C.; Weaver, M.J.; Ferrone, M.; Sodickson, A.; Khurana, B. Imaging Features and Management of Stress, Atypical, and Pathologic Fractures. Radiographics 2018, 38, 2173–2192. [Google Scholar] [CrossRef]
- Kaplan, F.S. Surgical management of paget’s disease. J. Bone Miner. Res. 1999, 14, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Sorg, M.H. Differentiating trauma from taphonomic alterations. Forensic Sci. Int. 2019, 302, 109893. [Google Scholar] [CrossRef]
- Pokines, J.T.; Menschel, M.; Mills, S.; Janowiak, E.; Satish, R.; Kincer, C. Experimental Formation of Marine Abrasion on Bone and the Forensic Postmortem Submergence Interval. Forensic Anthropol. 2020, 3, 175. [Google Scholar] [CrossRef]
- Ubelaker, D.H.; DeGaglia, C.M. The impact of scavenging: Perspective from casework in forensic anthropology. Forensic Sci. Res. 2020, 5, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Shahack-Gross, R.; Bar-Yosef, O.; Weiner, S. Black-Coloured Bones in Hayonim Cave, Israel: Differentiating Between Burning and Oxide Staining. J. Archaeol. Sci. 1997, 24, 439–446. [Google Scholar] [CrossRef]
- Krap, T. Cremains, What Remains: Heat Induced Changes of Biophysical Properties of Human Bone, Introducing New Parameters and Concepts for Forensic Anthropological Analysis; Maastricht University: Maastricht, The Netherlands, 2022. [Google Scholar]
- Behrensmeyer, A.K. Taphonomic and ecologic information from bone weathering. Paleobiology 1978, 4, 150–162. [Google Scholar] [CrossRef]
- Turner-Walker, G. Light at the end of the tunnels? The origins of microbial bioerosion in mineralised collagen. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 529, 24–38. [Google Scholar] [CrossRef]
- Magni, P.A.; Venn, C.; Aquila, I.; Pepe, F.; Ricci, P.; Di Nunzio, C.; Ausania, F.; Dadour, I.R. Evaluation of the floating time of a corpse found in a marine environment using the barnacle Lepas anatifera L. (Crustacea: Cirripedia: Pedunculata). Forensic Sci. Int. 2014, 247, e6–e10. [Google Scholar] [CrossRef]
- Guareschi, E.E.; Haig, D.W.; Tobe, S.S.; Nicholls, P.K.; Magni, P.A. Foraminifera–A new find in the microtaphonomical characterisation of bones from marine archaeological excavations. Int. J. Osteoarchaeol. 2021, 31, 1270–1275. [Google Scholar] [CrossRef]
- Privat, K.L.; O′Connell, T.C.; Richards, M.P. Stable Isotope Analysis of Human and Faunal Remains from the Anglo-Saxon Cemetery at Berinsfield, Oxfordshire: Dietary and Social Implications. J. Archaeol. Sci. 2002, 29, 779–790. [Google Scholar] [CrossRef]
- Chesson, L.A.; Berg, G.E. The use of stable isotopes in postconflict forensic identification. WIREs Forensic Sci. 2022, 4, e1439. [Google Scholar] [CrossRef]
- France, C.A.; Giaccai, J.A.; Doney, C.R. The effects of Paraloid B-72 and Butvar B-98 treatment and organic solvent removal on δ(13)C, δ(15)N, and δ(18)O values of collagen and hydroxyapatite in a modern bone. Am. J. Phys. Anthropol. 2015, 157, 330–338. [Google Scholar] [CrossRef]
- Williams, D.C. The past and future history of natural resins as coating materials in conservation. Mater. Sci. 1995. [Google Scholar]
- Popescu, C.-M.; Vasile, C.; Simionescu, B. Spectral characterization of natural resins used in conservation. Rev. Roum. De Chim. 2012, 57, 495–499. [Google Scholar]
- Brock, F.; Dee, M.; Hughes, A.; Snoeck, C.; Staff, R.; Ramsey, C.B. Testing the Effectiveness of Protocols for Removal of Common Conservation Treatments for Radiocarbon Dating. Radiocarbon 2018, 60, 35–50. [Google Scholar] [CrossRef]
- Schönberg, C.H.L.; Fang, J.K.-H.; Carballo, J.L. Bioeroding Sponges and the Future of Coral Reefs. In Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization; Carballo, J.L., Bell, J.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 179–372. [Google Scholar]
- Bromley, R.G.; Schönberg, C.H.L. Borings, Bodies and Ghosts: Spicules of the Endolithic Sponge Aka Akis sp. nov. Within the Boring Entobia Cretacea, Cretaceous, England, in Current Developments in Bioerosion; Wisshak, M., Tapanila, L., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2008; pp. 235–248. [Google Scholar]
- Jans, M.M.E.; Kars, H.; Nielsen–Marsh, C.M.; Smith, C.I.; Nord, A.G.; Arthur, P.; Earl, N. In situ preservation of archaeological bone: A histological study within a multidisciplinary approach. Archaeometry 2002, 44, 343–352. [Google Scholar] [CrossRef]
- Butler, V.L.; Schroeder, R.A. Do Digestive Processes Leave Diagnostic Traces on Fish Bones? J. Archaeol. Sci. 1998, 25, 957–971. [Google Scholar] [CrossRef]
- Krap, T.; Ruijter, J.M.; Nota, K.; Karel, J.; Burgers, A.L.; Aalders, M.C.; Oostra, R.J.; Duijst, W. Colourimetric analysis of thermally altered human bone samples. Sci. Rep. 2019, 9, 8923. [Google Scholar] [CrossRef]
- Donoghue, H.D. Molecular Palaeopathology of Human Infectious Disease. In Advances in Human Palaeopathology; Pinhasi, R., Mays, S., Eds.; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Wood, R. From revolution to convention: The past, present and future of radiocarbon dating. J. Archaeol. Sci. 2015, 56, 61–72. [Google Scholar] [CrossRef]
- Booth, T.J.; Bruck, J. Death is not the end: Radiocarbon and histo-taphonomic evidence for the curation and excarnation of human remains in Bronze Age Britain. Antiquity 2020, 94, 1186. [Google Scholar] [CrossRef]
- Bartelink, E.J.; Chesson, L.A. Recent applications of isotope analysis to forensic anthropology. Forensic Sci. Res. 2019, 4, 29–44. [Google Scholar] [CrossRef]
- Díaz-Cortés, A.; Graziani, G.; Boi, M.; López-Polín, L.; Sassoni, E. Conservation of Archaeological Bones: Assessment of Innovative Phosphate Consolidants in Comparison with Paraloid B72. Nanomaterials 2022, 12, 3163. [Google Scholar] [CrossRef]
- Sjögren, K.G.; Ahlström, T.; Blank, M.; Price, T.D.; Frei, K.M.; Hollund, H.I. Early Neolithic Human Bog Finds from Falbygden, Western Sweden: New Isotopic, Osteological and Histological Investigations. J. Neolit. Archaeol. 2017, 19, 97–126. [Google Scholar]
- Leskovar, T.; Zupanič Pajnič, I.; Jerman, I.; Črešnar, M. Separating forensic, WWII, and archaeological human skeletal remains using ATR-FTIR spectra. Int. J. Legal Med. 2020, 134, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Durga, R.; Jimenez, N.; Ramanathan, S.; Suraneni, P.; Pestle, W.J. Use of thermogravimetric analysis to estimate collagen and hydroxyapatite contents in archaeological bone. J. Archaeol. Sci. 2022, 145, 105644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guareschi, E.E.; Magni, P.A.; Berry, H.G. Potential Issues in the Conservation of Bone and Teeth in Maritime Archaeology. Heritage 2023, 6, 779-788. https://doi.org/10.3390/heritage6020042
Guareschi EE, Magni PA, Berry HG. Potential Issues in the Conservation of Bone and Teeth in Maritime Archaeology. Heritage. 2023; 6(2):779-788. https://doi.org/10.3390/heritage6020042
Chicago/Turabian StyleGuareschi, Edda Emanuela, Paola Annarosa Magni, and Heather G. Berry. 2023. "Potential Issues in the Conservation of Bone and Teeth in Maritime Archaeology" Heritage 6, no. 2: 779-788. https://doi.org/10.3390/heritage6020042
APA StyleGuareschi, E. E., Magni, P. A., & Berry, H. G. (2023). Potential Issues in the Conservation of Bone and Teeth in Maritime Archaeology. Heritage, 6(2), 779-788. https://doi.org/10.3390/heritage6020042