# The Diffraction Research of Cylindrical Block Effect Based on Indoor 45 GHz Millimeter Wave Measurements

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Environment and Measurement Model

## 3. Diffraction Theory

#### 3.1. Uniform Theory of Diffraction

_{1}and Q

_{2}in Figure 3. According to [14,15], The received signal strength in the shadow region can be expressed as:

#### 3.2. Vogler Multiple Knife-Edge Diffraction Theory

## 4. Experiment Results and Analysis

#### 4.1. Experiment Results and Error Analysis

#### 4.2. Coverage Analysis

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Fettweis, G.; Alamouti, S. 5G: Personal Mobile Internet beyond What Cellular Did to Telephony. IEEE Commun. Mag.
**2014**, 52, 140–145. [Google Scholar] [CrossRef] - Thompson, J.; Ge, X.; Wu, H.C.; Irmer, R.; Jiang, H.; Fettweis, G.; Alamouti, S. 5G Wireless Communication Systems: Prospects and Challenges. IEEE Commun. Mag.
**2014**, 52, 62–64. [Google Scholar] [CrossRef] - Lu, J.; Steinbach, D.; Cabrol, P.; Pietraski, P. Modeling the Impact of Human Blockers in Millimeter Wave Radio Links. Available online: http://www.interdigital.com/research_papers/2012_01_25_modeling_the_impact_of_human_blockers_in_millimeter_wave_radio_links (accessed on 28 April 2017).
- Wang, Q.; Zhao, X.; Li, S.; Wang, M.; Sun, S.; Hong, W. Attenuation by a Human Body and Trees as well as Material Penetration Loss in 26 and 39 GHz Millimeter Wave Bands. Int. J. Antennas Propag.
**2017**, 2017, 2961090. [Google Scholar] [CrossRef] - Geng, S.Y.; Li, X.; Wang, Q.; Wang, G.B.; Wang, M.J.; Sun, S.H.; Wei, H.; Zhao, X.W. Research on human blockage effect for indoor 26 GHz mm-wave communications. J. Commun.
**2016**, 37, 68–73. (In Chinese) [Google Scholar] - Geng, S.Y.; Liu, S.Y.; Hong, W.; Zhao, X.W. Mm-wave 60GHz indoor channel parameters and correlation properties. Chin. J. Radio Sci.
**2015**, 30, 808–813. (In Chinese) [Google Scholar] - Jacob, M.; Priebe, S.; Dickhoff, R.; Kleine-Ostmann, T.; Schrader, T.; Kurner, T. Diffraction in mm and sub-mmwave indoor propagation channels. IEEE Trans. Microw. Theory Tech.
**2012**, 60, 833–844. [Google Scholar] [CrossRef] - Pathak, P.H.; Burnside, W.; Marhefka, J.R. A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface. IEEE Trans. Antennas Propag.
**1980**, 28, 631–642. [Google Scholar] [CrossRef] - Pathak, P.H. An asymptotic analysis of the scattering of plane waves by a smooth convex cylinder. Radio Sci.
**1979**, 14, 419–435. [Google Scholar] [CrossRef] - Idemen, M.I. Diffraction of an Obliquely Incident High-Frequency Wave by a Cylindrically Curved Sheet. IEEE Trans. Antennas Propag.
**1986**, 34, 181–187. [Google Scholar] [CrossRef] - Ghaddar, M.; Talbi, L.; Denidni, T.A.; Sebak, A. A Conducting Cylinder For Modeling Human Body Presence in Indoor Propagation Channel. IEEE Trans. Antennas Propag.
**2007**, 55, 3099–3103. [Google Scholar] [CrossRef] - Andersen, J.B. UTD Multiple-Edge Transition Zone Diffraction. IEEE Trans. Antennas Propog.
**1997**, 45, 1093–1097. [Google Scholar] [CrossRef] - Kouyoumjian, R.G.; Pathak, P.H. A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly Conducting Surface. Proc. IEEE
**1974**, 62, 1448–1461. [Google Scholar] [CrossRef] - Tzaras, C.; Saunders, S.R. An improved heuristic UTD solution for multiple edge transition zone diffraction. IEEE Trans. Antennas Propag.
**2001**, 49, 1678–1682. [Google Scholar] [CrossRef] - Koutitas, G.; Tzaras, C. A UTD Solution for Multiple Round Surfaces. IEEE Trans. Antennas Propag.
**2006**, 54, 1277–1283. [Google Scholar] [CrossRef] - Vogler, L.E. An attenuation function for multiple knife edge diffraction. Radio Sci.
**1982**, 17, 1541–1546. [Google Scholar] [CrossRef]

**Figure 2.**Cylinder and human body block models: (

**a**) A cylinder moved along the TX-RX line; (

**b**) A man moved along the TX-RX line; (

**c**) A cylinder and a moved man blocking the TX-RX connection; (

**d**) A moved man and a cylinder blocking the TX-RX connection.

**Figure 5.**Measurement results and error curves under two cylinder blocks of different materials: (

**a**) Measurement results and theoretical simulation curves under one cylinder block; (

**b**) Error analysis of two cylinder blocks measurement results.

**Figure 6.**Measurement results and error curves under the human body block: (

**a**) Measurement results and theoretical simulation under the human body block; (

**b**) Error analysis of two laboratory measurement results.

Parameter | Value |
---|---|

Carrier | 45 GHz |

TX power | 0 dB |

Height of the TX/RX | 1.2 m/1.2 m |

Gain of the horn antenna | 25 dB |

Polarization of the horn | vertical |

Half Power Beam Width (HPBW) of the horn | 10° |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, X.; Li, Y.; Li, B.
The Diffraction Research of Cylindrical Block Effect Based on Indoor 45 GHz Millimeter Wave Measurements. *Information* **2017**, *8*, 50.
https://doi.org/10.3390/info8020050

**AMA Style**

Li X, Li Y, Li B.
The Diffraction Research of Cylindrical Block Effect Based on Indoor 45 GHz Millimeter Wave Measurements. *Information*. 2017; 8(2):50.
https://doi.org/10.3390/info8020050

**Chicago/Turabian Style**

Li, Xingrong, Yongqian Li, and Baogang Li.
2017. "The Diffraction Research of Cylindrical Block Effect Based on Indoor 45 GHz Millimeter Wave Measurements" *Information* 8, no. 2: 50.
https://doi.org/10.3390/info8020050