Subtraction and Division Operations of Simplified Neutrosophic Sets
Abstract
:1. Introduction
2. Some Basic Knowledge of SNSs and Their Basic Operations
- (1)
- Complement: ;
- (2)
- Inclusion: N1 N2 if and only if , , and for any x in X;
- (3)
- Equality: N1 = N2 if and only if N1 N2 and N2 N1.
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- .
- (1)
- Complement: ;
- (2)
- Inclusion: N1 N2 if and only if , , , , , and for any x in X;
- (3)
- Equality: N1 = N2 if and only if N1 N2 and N2 N1.
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- .
3. Subtraction and Division Operations over SNSs
3.1. Subtraction and Division Operations over SVNSs
3.2. Subtraction and Division Operations of INSs
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, NM, USA, 1999. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.T.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multisp. Multistruct. 2010, 4, 410–413. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision making problems. Sci. World J. 2014. [Google Scholar] [CrossRef] [PubMed]
- Smarandache, F. Subtraction and division of neutrosophic numbers. Crit. Rev. 2016, 13, 103–110. [Google Scholar]
- Atanassov, K.T. Remark on operations “subtraction” over intuitionistic fuzzy sets. Notes Intuit. Fuzzy Sets 2009, 15, 20–24. [Google Scholar]
- Atanassov, K.T. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
- Atanassov, K.T.; Riecan, B. On two operations over intuitionistic fuzzy sets. J. Appl. Math. Stat. Inform. 2006, 2, 145–148. [Google Scholar] [CrossRef]
- Chen, T.Y. Remarks on the subtraction and division operations over intuitionistic fuzzy sets and interval-valued fuzzy sets. Int. J. Fuzzy Syst 2007, 9, 169–172. [Google Scholar]
- Lu, Z.K.; Ye, J. Decision-making method for clay-brick selection based on subtraction operational aggregation operators of intuitionistic fuzzy values. Open Cybern. Syst. J. 2016, 10, 283–291. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J. Subtraction and Division Operations of Simplified Neutrosophic Sets. Information 2017, 8, 51. https://doi.org/10.3390/info8020051
Ye J. Subtraction and Division Operations of Simplified Neutrosophic Sets. Information. 2017; 8(2):51. https://doi.org/10.3390/info8020051
Chicago/Turabian StyleYe, Jun. 2017. "Subtraction and Division Operations of Simplified Neutrosophic Sets" Information 8, no. 2: 51. https://doi.org/10.3390/info8020051
APA StyleYe, J. (2017). Subtraction and Division Operations of Simplified Neutrosophic Sets. Information, 8(2), 51. https://doi.org/10.3390/info8020051