Toward E-Content Adaptation: Units’ Sequence and Adapted Ant Colony Algorithm
Abstract
:1. Introduction
2. The Adapted Ant Colony Algorithm
2.1. New Pheromone
2.2. Fitness’s Value
3. Test Cases
Unit’s Start | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit’s dest. | 2 | 3 | 4 | 9 | 1 | 3 | 4 | 6 | 1 | 5 | 4 | 2 | 3 | 5 | 8 | 1 | 3 | 4 | 6 |
Weights | 4 | 8 | 5 | 6 | 7 | 3 | 10 | 1 | 8 | 5 | 9 | 13 | 2 | 10 | 4 | 17 | 7 | 1 | 18 |
Sequence | ok | ok | ok | no | ok | ok | ok | ok | ok | ok | ok | ok | ok | ok | no | ok | Ok | ok | Ok |
Unit’s Start | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 10 | 10 | 10 | 10 |
Unit’s dest. | 7 | 4 | 2 | 4 | 3 | 5 | 8 | 10 | 9 | 4 | 5 | 10 | 4 | 8 | 7 | 8 | 2 | 6 | 9 |
Weights | 7 | 8 | 13 | 9 | 2 | 5 | 14 | 19 | 13 | 3 | 5 | 20 | 5 | 10 | 8 | 10 | 3 | 4 | 5 |
Sequence | ok | ok | ok | no | no | ok | ok | ok | ok | no | no | ok | no | ok | ok | ok | No | ok | Ok |
Units’ Start | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | - |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Units’ dest. | 2 | 3 | 11 | 9 | 1 | 12 | 4 | 6 | 1 | 5 | 4 | 20 | 3 | 5 | 25 | 1 | 14 | 28 | 30 | - |
Weights | 4 | 8 | 3 | 6 | 7 | 1 | 10 | 1 | 8 | 5 | 9 | 1 | 2 | 10 | 4 | 17 | 7 | 1 | 18 | - |
Sequence | ok | ok | Ok | no | ok | ok | ok | ok | ok | ok | ok | ok | ok | ok | no | ok | ok | Ok | ok | - |
Units’ Start | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 10 | 10 | 10 | 10 | - |
Units’dest. | 7 | 15 | 2 | 4 | 23 | 5 | 16 | 10 | 18 | 4 | 5 | 10 | 4 | 21 | 7 | 8 | 2 | 22 | 9 | - |
Weights | 7 | 8 | 13 | 9 | 2 | 5 | 14 | 19 | 13 | 3 | 5 | 20 | 5 | 10 | 8 | 10 | 3 | 4 | 5 | - |
Sequence | ok | ok | Ok | no | no | ok | ok | ok | ok | no | no | ok | no | ok | ok | ok | no | Ok | ok | - |
Units’ Start | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
Units’ dest. | 2 | 4 | 3 | 1 | 9 | 10 | 24 | 22 | 27 | 4 | 8 | 5 | 1 | 2 | 13 | 18 | 20 | 16 | 12 | 10 |
Weights | 5 | 7 | 2 | 1 | 3 | 14 | 2 | 7 | 5 | 2 | 5 | 4 | 7 | 10 | 2 | 8 | 3 | 7 | 6 | 9 |
Sequence | ok | ok | No | ok | ok | ok | ok | ok | no | ok | ok | ok | ok | ok | no | ok | ok | Ok | ok | ok |
4. Results and Discussion
4.1. Case 1
4.2. Case 2
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Benabdellah, N.C.; Gharbi, M.; Bellafkih, M. Content adaptation and learner profile definition: Ant colony algorithm application. In Proceedings of the Intelligent Systems: Theories and Applications (SITA-13), Rabat, Morocco, 8–9 May 2013.
- Benabdellah, N.C.; Gharbi, M.; Bellafkih, M. Learner’s profile definition: Fuzzy logic application. Intl. J. Comput. Sci. Electron. Eng. 2013, 1, 542–546. [Google Scholar]
- Benabdellah, N.C.; Gharbi, M.; Bellafkih, M. Ant colony algorithm and new pheromone to adapt units sequence to learners’ profiles. In Proceedings of the 9th International Conference on Intelligent Systems: Theories and Applications (SITA-14), Rabat, Morocco, 7–8 May 2014.
- Tseng, J.C.; Chu, H.C.; Hwang, G.J.; Tsai, C.C. Development of an adaptive learning system with two sources of personalization information. Comput. Educ. 2008, 51, 776–786. [Google Scholar] [CrossRef]
- Pappas, E.; Pierrakos, O.; Nagel, R. Using bloom’s taxonomy to teach sustainability in multiple contexts. J. Clean. Prod. 2013, 48. [Google Scholar] [CrossRef]
- Omar, N.; Harisa, S.S.; Hassana, R.; Haslina, A.; Rahmat, M.; Zainal, N.F.A.; Rozli, Z. Automated analysis of exam questions according to bloom’s taxonomy. Procedia Soc. Behav. Sci. 2012, 59, 297–303. [Google Scholar] [CrossRef]
- Megder, E.L.; Cherkaoui, C.; Mammass, D. Vers une méthodologie de conception d’une mémoire organisationnelle basée sur le e-learning et les ontologies. Syst. Intell. Théor. Appl. 2008, 1, 9–24. (in French). [Google Scholar]
- Essalmia, F.; Ayed, L.J.B.; Jemnia, M.; Kinshukb, S.G. Generalized metrics for the analysis of E-learning personalization strategies. Comput. Hum. Behav. 2015, 48, 310–322. [Google Scholar] [CrossRef]
- Dorigo, M.; Stützle, T. Ant Colony Optimization; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Allach, S.; Ahmed, M.B.; Ghadi, A.; Essaadi, M. Modeling of e-learning based on ant colony algorithm. Intl. J. Netw. Syst. 2012, 1, 37–42. [Google Scholar]
- Zhang, N.; Feng, Z.R.; Ke, L.J. New pheromone trail updating method of ACO for satellite control resource scheduling problem. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain, 18–23 July 2010.
- Gutiereez, S.; Valigiani, G.; Collet, P.; Kloos, C.D. Adaptation of the ACO Heuristic for Sequencing Learning Activities. In Proceedings of the European Conference on Technology Enhanced Learning (EC-TEL), Crete, Greece, 17–20 September 2007; pp. 17–20.
- Yoshikawa, M.; Fukui, M.; Terai, H. A new pheromone control algorithm of ant colony optimization. In Proceedings of the International Conference on Smart Manufacturing Application, ICSMA 2008, Gyeonggi-do, Korea, 9–11 April 2008.
- Zhuo, X.L.; Zhanng, J.; Chen, W.N. A new pheromone design in ACS for solving JSP. In Proceedings of the IEEE Congress on Evolutionary Computation, Singapore, Singapore, 25–28 September 2007.
- Fonooni, B.; Jevtic, A.; Hellström, T.; Janlert, L.E. Applying ant colony optimization algorithms for high-level behavior learning and reproduction from demonstrations. Robot. Auton. Syst. 2015, 65, 24–39. [Google Scholar] [CrossRef]
- Wang, T.I.; Wang, K.T.; Huang, Y.M. Using a style-based ant colony system for adaptive learning. Expert Syst. Appl. 2008, 34, 2449–2464. [Google Scholar] [CrossRef]
- Fard, E.S.; Menfaredi, K.; Nadimi, M.H. Application methods of ant colony algorithm. Am. J. Softw. Eng. Appl. 2014, 3, 12–20. [Google Scholar] [CrossRef]
- Semet, Y.; Jamont, Y.; Biojout, R.; Lutton, E.; Collet, P. Artificial ant colonies and e-learning: An optimisation of pedagogical paths. In Proceedings of the Conference on Human-Computer Interaction, Crete, Greece, 22–27 June 2003.
- Benabdellah, N.C.; Gharbi, M.; Bellafkih, M. E-content adaptation: New pheromone and adapted ant colony algorithm. In Proceedings of the Mediterranean Conference on information & Communication Technologies’2015, Saidia, Morocco, 7–9 May 2015.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benabdellah, N.C.; Gharbi, M.; Bellafkih, M. Toward E-Content Adaptation: Units’ Sequence and Adapted Ant Colony Algorithm. Information 2015, 6, 564-575. https://doi.org/10.3390/info6030564
Benabdellah NC, Gharbi M, Bellafkih M. Toward E-Content Adaptation: Units’ Sequence and Adapted Ant Colony Algorithm. Information. 2015; 6(3):564-575. https://doi.org/10.3390/info6030564
Chicago/Turabian StyleBenabdellah, Naoual Chaouni, Mourad Gharbi, and Mostafa Bellafkih. 2015. "Toward E-Content Adaptation: Units’ Sequence and Adapted Ant Colony Algorithm" Information 6, no. 3: 564-575. https://doi.org/10.3390/info6030564
APA StyleBenabdellah, N. C., Gharbi, M., & Bellafkih, M. (2015). Toward E-Content Adaptation: Units’ Sequence and Adapted Ant Colony Algorithm. Information, 6(3), 564-575. https://doi.org/10.3390/info6030564