Next Article in Journal
A Class of New Metrics Based on Triangular Discrimination
Next Article in Special Issue
Optimization of China Crude Oil Transportation Network with Genetic Ant Colony Algorithm
Previous Article in Journal
Mind, Matter, Information and Quantum Interpretations
Previous Article in Special Issue
An Approach to an Intersection Traffic Delay Study Based on Shift-Share Analysis
Article Menu

Export Article

Open AccessArticle
Information 2015, 6(3), 339-360;

Improved Genetic Algorithm Optimization for Forward Vehicle Detection Problems

Navigation College, Dalian Maritime University, Dalian 116026, China
School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China
Author to whom correspondence should be addressed.
Academic Editors: Baozhen Yao and Yudong Zhang
Received: 30 May 2015 / Revised: 26 June 2015 / Accepted: 6 July 2015 / Published: 10 July 2015
(This article belongs to the Special Issue Swarm Information Acquisition and Swarm Intelligence in Engineering)
Full-Text   |   PDF [4470 KB, uploaded 10 July 2015]   |  


Automated forward vehicle detection is an integral component of many advanced driver-assistance systems. The method based on multi-visual information fusion, with its exclusive advantages, has become one of the important topics in this research field. During the whole detection process, there are two key points that should to be resolved. One is to find the robust features for identification and the other is to apply an efficient algorithm for training the model designed with multi-information. This paper presents an adaptive SVM (Support Vector Machine) model to detect vehicle with range estimation using an on-board camera. Due to the extrinsic factors such as shadows and illumination, we pay more attention to enhancing the system with several robust features extracted from a real driving environment. Then, with the introduction of an improved genetic algorithm, the features are fused efficiently by the proposed SVM model. In order to apply the model in the forward collision warning system, longitudinal distance information is provided simultaneously. The proposed method is successfully implemented on a test car and evaluation experimental results show reliability in terms of both the detection rate and potential effectiveness in a real-driving environment. View Full-Text
Keywords: vehicle detection; genetic algorithm (GA); advanced driver-assistance systems (ADAS); forward collision warning system (FCWS) vehicle detection; genetic algorithm (GA); advanced driver-assistance systems (ADAS); forward collision warning system (FCWS)

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Gang, L.; Zhang, M.; Zhao, X.; Wang, S. Improved Genetic Algorithm Optimization for Forward Vehicle Detection Problems. Information 2015, 6, 339-360.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Information EISSN 2078-2489 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top