A General Overview of Scientific Production in China, Japan and Korea of the Water-Gas Shift (WGS) Process
Abstract
:1. Introduction
2. Experimental Section
3. Results
3.1. Publication Source
3.2. Subject Categories
3.3. Journal Sources and Language-Wise Distribution of Paper
3.4. Organization-Wise Distribution of Publications
3.5. Authors
3.6. Collaboration Patterns in China, Japan and Korea
3.7. Citations Analysis
Year | Authors | Title | Journal, volume and pages | Citation |
---|---|---|---|---|
1990 | Chung, S.H., Williams, F.A. | Asymptotic structure and extinction of CO-H2 diffusion flames with reduced kinetic mechanisms | Combustion and Flame, 82 (3–4), pp. 389–410. | 11 |
1991 | Kim, I.-W., Edgar, T.F., Bell, N.H. | Parameter estimation for a laboratory water-gas-shift reactor using a nonlinear error-in-variables method | Computers and Chemical Engineering, 15 (5), pp. 361–367. | 6 |
1993 | Chu, J.-W., Shim, I.-W. | The chemistry of ruthenium in cellulose acetate: Reactions with CO, H2, O2 and H2O | Journal of Molecular Catalysis, 78 (2), pp. 189–199. | 9 |
1994 | Song, M.-S., Kim, S.-J., Shim, I.-W., Oh, S.-J., Yang, Y.-S., Suh, H.-K. | Chemistry of ruthenium in polysulfone: Reactions with various small gas molecules | Reactive Polymers, 22 (1), pp. 35–46. | 1 |
1996 | Shim, I.-W., Oh, W.-S.,Jeong, H.-C., Seok, W.-K. | Preparation of ruthenium-containing polycarbonate films and the chemistry of ruthenium in polycarbonate | Macromolecules, 29 (4), pp. 1099–1104. | 16 |
1997 | Fisher, I.A., Woo, H.C., Bell, A.T. | Effects of zirconia promotion on the activity of Cu/SiO2 for methanol synthesis from CO/H2 and CO2/H2 | Catalysis Letters, 44 (1-2), pp. 11–17. | 50 |
1998 | Park, J.-N., Kim, J.-H., Lee, H.-I. | A study on the sulfur-resistant catalysts for water gas shift reaction I. TPR studies of Mo/γ-Al2O3 catalysts | Bulletin of the Korean Chemical Society, 19 (12), pp. 1363–1368.. | 3 |
1999 | Riedel, T., Claeys, M., Schulz, H., Schaub, G., Nam, S.-S., Jun, K.-W., Choi, M.-J., Kishan, G., Lee, K.-W. | Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts | Applied Catalysis A: General, 186 (1–2), pp. 201–213. | 84 |
2000 | Patt, J., Moon, D.J., Phillips, C., Thompson, L. | Molybdenum carbide catalysts for Water-Gas Shift | Catalysis Letters, 65 (4), pp. 193–195. | 84 |
2001 | Moon, D.J., Sreekumar, K., Lee, S.D., Lee, B.G., Kim, H.S. | Studies on gasoline fuel processor system for fuel-cell powered vehicles application | Applied Catalysis A: General, 215 (1–2), pp. 1–9. | 80 |
2002 | Lee, I.-G., Kim, M.-S., Ihm, S.-K. | Gasification of glucose in supercritical water | Industrial and Engineering Chemistry Research, 41 (5), pp. 1182–1188. | 102 |
2003 | Riedel, T., Schulz, H., Schaub, G., Jun, K.-W., Hwang, J.-S., Lee, K.-W. | Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases: The episodes of formation of the Fischer-Tropsch regime and construction of the catalyst | Topics in Catalysis, 26 (1–4), pp. 41–54. | 39 |
2004 | Oh, Y.-K., Seol, E.-H., Kim, M.-S., Park, S. | Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4 | International Journal of Hydrogen Energy, 29 (11), pp. 1115–1121. | 83 |
2005 | Ko, J.B., Bae, C.M., Jung, Y.S., Kim, D.H. | Cu-ZrO2 catalysts for water-gas-shift reaction at low temperatures | Catalysis Letters, 105 (3–4), pp. 157–161. | 21 |
2006 | Youn, M.H., Seo, J.G., Kim, P., Kim, J.J., Lee, H.-I., Song, I.K. | Hydrogen production by auto-thermal reforming of ethanol over Ni/γ-Al2O3 catalysts: Effect of second metal addition | Journal of Power Sources, 162 (2 SPEC. ISS.), pp. 1270–1274. | 30 |
2007 | Brunetti, A., Barbieri, G., Drioli, E., Lee, K.-H., Sea, B., Lee, D.-W. | WGS reaction in a membrane reactor using a porous stainless steel supported silica membrane | Chemical Engineering and Processing: Process Intensification, 46 (2), pp. 119–126. | 29 |
2008 | Kim, S.H., Nam, S.-W., Lim, T.-H., Lee, H.-I. | Effect of pretreatment on the activity of Ni catalyst for CO removal reaction by water-gas shift and methanation | Applied Catalysis B: Environmental, 81 (1–2), pp. 97–104. | 18 |
2009 | Park, E.D., Lee, D., Lee, H.C. | Recent progress in selective CO removal in a H2-rich stream | Catalysis Today, 139 (4), pp. 280–290. | 76 |
2010 | Park, J.B., Graciani, J., Evans, J., Stacchiola, D., Senanayake, S.D., Barrio, L., Liu, P., Sanz, J.Fdez., Hrbek, J., Rodriguez, J.A. | Gold, copper, and platinum nanoparticles dispersed on CeOx/TiO2(110) surfaces: High water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level | Journal of the American Chemical Society, 132 (1), pp. 356–363. | 32 |
2011 | Hwang, K.-R., Lee, C.-B., Park, J.-S. | Advanced nickel metal catalyst for water-gas shift reaction | Journal of Power Sources, 196 (3), pp. 1349–1352. | 2 |
4. Discussion
Year | China | Japan | Korea | Asia | World | |
---|---|---|---|---|---|---|
GERD (in billion PPP$) 1 | 2002 | 39.2 | 108.2 | 22.5 | 213.9 | 790.3 |
2007 | 102.4 | 147.9 | 41.3 | 369.3 | 1145.7 | |
% world GERD | 2002 | 5.0% | 13.7% | 2.8% | 27.1% | 100% |
2007 | 8.9% | 12.9% | 3.6% | 32.2% | 100% | |
GERD as % of GDP 2 | 2002 | 1.1% | 3.2% | 2.4% | 1.5% | 1.7% |
2007 | 1.4% | 3.4% | 3.2% | 1.6% | 1.7% | |
Researchers (FTE) (thousands) 3 | 2002 | 810.5 | 646.5 | 141.9 | 2064.6 | 5810.7 |
2007 | 1423.4 | 710.0 | 221.9 | 2950.6 | 7209.7 | |
% world Researchers | 2002 | 13.9% | 11.1% | 2.4% | 35.5% | 100% |
2007 | 19.7% | 9.8% | 3.1% | 40.9% | 100% | |
Researchers per million in habitants 4 | 2002 | 630.3 | 5087.0 | 3022.8 | 554.2 | 926.1 |
2007 | 1070.9 | 5573.0 | 4627.2 | 745.9 | 1080.8 | |
GERD per Researchers (thousand PPP$) | 2002 | 48.4 | 167.3 | 158.6 | 103.6 | 136.0 |
2007 | 72.0 | 208.4 | 186.3 | 125.2 | 158.9 |
GERD | GERD (in billion PPP$) | GERD (in percent) | |||||||
---|---|---|---|---|---|---|---|---|---|
(in billion PPP$) | by type of R&D activity | by type of R&D activity | |||||||
BR | AR | ED | UK | BR (%) | AR (%) | ED (%) | UK (%) | ||
CH | 121.4 | 5.9 | 15.1 | 100.4 | – | 4.8 | 12.5 | 82.8 | – |
JP | 148.7 | 16.9 | 32.2 | 93.1 | 6.4 | 11.4 | 21.7 | 62.6 | 4.3 |
RK | 43.9 | 7.0 | 8.6 | 28.2 | – | 16.1 | 19.6 | 64.3 | – |
5. Conclusions
Acknowledgments
References
- Wolcott, S. Explorations’ contribution to the “Asian Century”. Explor. Econ. Hist. 2010, 47, 360–367. [Google Scholar] [CrossRef]
- Kapoor, R. Asian century, planetary change? Futures 2008, 40, 300–304. [Google Scholar] [CrossRef]
- Jeang, K.-T. The asian century: The changing geography of science. J. Formos. Med. Assoc. 2008, 107, 101–102. [Google Scholar] [CrossRef]
- Gao, X.; Guo, X.; Katz, J.S.; Guan, J. The Chinese innovation system during economic transition: A scale-independent view. J. Informetr. 2010, 4, 618–628. [Google Scholar]
- Motohashi, K.; Yun, X. China’s innovation system reform and growing industry and science linkages. Res. Policy 2007, 36, 1251–1260. [Google Scholar] [CrossRef]
- Coe, D.T.; Helpman, E. International R&D spillovers. Eur. Econ. Rev. 1995, 39, 859–887. [Google Scholar]
- Jones, C.I. R&D-based models of economic growth. J. Polit. Econ. 1995, 103, 759–784. [Google Scholar]
- Romer, P.M. Endogenous technological change. J. Polit. Econ. 1990, 98, S71–S102. [Google Scholar]
- Aghion, P.; Howitt, P. A model of growth through creative destruction. Econometrica 1992, 60, 323–351. [Google Scholar] [CrossRef]
- Moed, H.F. Measuring China’s research performance using the Science Citation Index. Scientometrics 2002, 53, 281–296. [Google Scholar]
- Larsen, P.O.; Maye, I.; von Ins, M. Scientific output and impact: Relative positions of China, Europe, India, Japan and the USA. In Proceeding of Fourth International Conference on WebometricsInformetrics and Scientometrics & Ninth COLLNET MeetingHumboldt-Universität zu BerlinInstitute for Library and Information Science (IBI), Berlin, Germany, 28 July–1 August 2008; pp. 1–9.
- Hu, M.-C.; Mathews, J.A. China’s national innovative capacity. Res. Policy 2008, 37, 1465–1479. [Google Scholar]
- Hu, A.G. Technology parks and regional economic growth in China. Res. Policy 2007, 36, 76–87. [Google Scholar]
- Oh, S.-J. Academic research in Korea. Nat. Mater. 2007, 6, 707–709. [Google Scholar] [CrossRef]
- Jin, B.; Rousseau, R. China’s quantitative expansion phase: Exponential growth, but low impact. In Proceedings of the 10th International Conference on Scientometrics and Informetrics, Stockholm, Sweden, 24–28 July 2005.
- King, D.A. The scientific impact of nations. Nature 2004, 430, 311–316. [Google Scholar]
- Kostoff, R.N. The (scientific) wealth of nations. 2004. Available online: http://www.the-scientist.com/?articles.view/articleNo/15915/title/The--Scientific--Wealth-of-Nations/ (accessed on 29 November 2012).
- Ashkanasy, N.M. Leadership in the Asian century: Lessons from GLOBE. Int. J. Organ. Behav. 2002, 5, 150–163. [Google Scholar]
- Haryanto, A.; Fernando, S.D.; To, S.D.F.; Steele, P.H.; Pordesimo, L.; Adhikari, S. Hydrogen production through the water-gas shift reaction: Thermodynamic equilibrium versus experimental results over supported Ni catalysts. Energy Fuels 2009, 23, 3097–3102. [Google Scholar] [CrossRef]
- Ratnasamy, C.; Wagner, J.P. Water gas shift catalysis. Catal. Rev. 2009, 51, 325–440. [Google Scholar]
- Du, Y.; Teixeira, A.A.C. A bibliometric account of Chinese economics research through the lens of the China Economic Review. China Econ. Rev. 2012, 23, 743–762. [Google Scholar] [CrossRef]
- Egghe, L. Five years “Journal of Informetrics”. J. Informetr. 2012, 6, 422–426. [Google Scholar]
- Bar-Ilan, J. Informetrics at the beginning of the 21st century—A review. J. Informetr. 2008, 2, 1–52. [Google Scholar] [CrossRef]
- SciVerse Scopus Home Page. Available online: http://www.scopus.com/home.url (accessed on 20 November 2012).
- Vieira, E.S.; Gomes, J.A.N.F. A comparison of Scopus and Web of Science for a typical university. Scientometrics 2009, 81, 587–600. [Google Scholar]
- Jacso, P. As we may search—Comparison of major features of the Web of Science, Scopus, and Google Scholar citation-based and citation-enhanced databases. Curr. Sci. 2005, 89, 1537–1547. [Google Scholar]
- Magnone, E. An analysis for estimating the short-term effects of Japan’s triple disaster on progress in materials science. J. Informetr. 2012, 6, 289–297. [Google Scholar]
- Organisation for Economic Co-operation and Development, Frascati Manual: Proposed Standard Practice for Surveys on Research and Experimental Development; OECD Publishing: Paris, France, 2002.
- Adams, J.; King, C.; Ma, N. Global Research Report China—Research and Collaboration in the New Geography of Science; Thomson Reuters company: Leeds, UK, 2009. [Google Scholar]
- Park, J.B.; Graciani, J.; Evans, J.; Stacchiola, D.; Senanayake, S.D.; Barrio, L.; Liu, P.; Sanz, J.F.; Hrbek, J.; Rodriguez, J.A. Gold, copper, and platinum nanoparticles dispersed on CeOx/TiO2(110) surfaces: High water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. J. Am. Chem. Soc. 2010, 132, 356–363. [Google Scholar]
- Chung, S.H.; Williams, F.A. Asymptotic structure and extinction of CO-H2 diffusion flames with reduced kinetic mechanisms. Combust. Flame 1990, 82, 389–410. [Google Scholar]
- Chu, J.-W.; Shim, I.-W. The chemistry of ruthenium in cellulose acetate: Reactions with CO, H2, O2 and H2O. J. Mol. Catal. 1993, 78, 189–199. [Google Scholar] [CrossRef]
- Zhou, P.; Leydesdorff, L. The emergence of China as a leading nation in science. Res. Policy 2006, 35, 83–104. [Google Scholar]
- Royal Society. The Royal Society, Knowledge, Networks and Nations—Global scientific collaboration in the 21st century. Available online: http://royalsociety.org/uploadedFiles/Royal_Society_Content/Influencing_Policy/Reports/2011-03-28-Knowledge-networks-nations.pdf (accessed on 15 January 2012).
- UNESCO Home page. Available online: http://stats.uis.unesco.org/unesco/ReportFolders/ReportFolders.aspx?IF_ActivePath=P,54&IF_Language=eng (accessed on 20 November 2012).
- The World Bank Group. China’s Growth through Technological Convergence and Innovation. Available online: http://www.worldbank.org/en/news/2012/02/27/china-2030-executive-summary (accessed on 16 November 2012).
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Magnone, E. A General Overview of Scientific Production in China, Japan and Korea of the Water-Gas Shift (WGS) Process. Information 2012, 3, 771-789. https://doi.org/10.3390/info3040771
Magnone E. A General Overview of Scientific Production in China, Japan and Korea of the Water-Gas Shift (WGS) Process. Information. 2012; 3(4):771-789. https://doi.org/10.3390/info3040771
Chicago/Turabian StyleMagnone, Edoardo. 2012. "A General Overview of Scientific Production in China, Japan and Korea of the Water-Gas Shift (WGS) Process" Information 3, no. 4: 771-789. https://doi.org/10.3390/info3040771
APA StyleMagnone, E. (2012). A General Overview of Scientific Production in China, Japan and Korea of the Water-Gas Shift (WGS) Process. Information, 3(4), 771-789. https://doi.org/10.3390/info3040771