Knowledge Enhancement and Semantic Information-Fused Emotion–Cause Pair Extraction
Abstract
1. Introduction
2. Related Work
2.1. Emotion–Cause Extraction
2.2. Machine Reading Comprehension
2.3. ATOMIC Knowledge Retrieval and Query Formulation
3. Methodology
3.1. Task Definition
3.2. Document Encoding
3.3. Graph Attention Module
3.4. Pair Prediction
4. Experiments
4.1. Datasets and Settings
4.2. Baselines
4.3. Main Results
4.4. The Impact of the Number of Emotion–Cause Pairs
4.5. Ablation Study
4.6. Case Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Sensitivity Analysis of Hyperparameter α
| Dev ECPE-F1 (%) | Val ECPE-F1 (%) | |
|---|---|---|
| 0.01 | 75.32 | 74.89 |
| 0.05 | 76.81 | 76.12 |
| 0.1 | 77.61 | 76.95 |
| 0.2 | 76.93 | 76.40 |
| 0.5 | 75.04 | 74.58 |
Appendix A.2. Model Efficiency Comparison
| Model | Base Model | Parameter Count (Approx.) * | Inference Time per Doc (GPU est.) * |
|---|---|---|---|
| MEKiT | Gemma-2-9B-it | 9 B | 200 ms–1000 ms |
| GAT-ECPE | BERT-Base | 120 M | 100 ms–225 ms |
| KESIF | BERT-Base | 115 M | 60 ms–250 ms |
References
- Xia, R.; Ding, Z. Emotion-cause pair extraction: A new task to emotion analysis in texts. arXiv 2019, arXiv:1906.01267. [Google Scholar] [CrossRef]
- Lee, S.Y.M.; Chen, Y.; Huang, C.R. A text-driven rule-based system for emotion cause detection. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, Los Angeles, CA, USA, 5 June 2010; pp. 45–53. [Google Scholar]
- Gao, K.; Xu, H.; Wang, J. Emotion cause detection for chinese micro-blogs based on ecocc model. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Ho Chi Minh City, Vietnam, 19–22 May 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–14. [Google Scholar]
- Ghazi, D.; Inkpen, D.; Szpakowicz, S. Detecting emotion stimuli in emotion-bearing sentences. In Proceedings of the International Conference on Intelligent Text Processing and Computational Linguistics, Cairo, Egypt, 14–20 April 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 152–165. [Google Scholar]
- Gui, L.; Yuan, L.; Xu, R.; Liu, B.; Lu, Q.; Zhou, Y. Emotion cause detection with linguistic construction in chinese weibo text. In Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing, Shenzhen, China, 5–9 December 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 457–464. [Google Scholar]
- Ahmad, F.; Abbasi, A.; Li, J.; Dobolyi, D.G.; Netemeyer, R.G.; Clifford, G.D.; Chen, H. A deep learning architecture for psychometric natural language processing. ACM Trans. Inf. Syst. (TOIS) 2020, 38, 1–29. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, W.; Cheng, X.; Li, S. Joint learning for emotion classification and emotion cause detection. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 646–651. [Google Scholar]
- Fan, C.; Yan, H.; Du, J.; Gui, L.; Bing, L.; Yang, M.; Xu, R.; Mao, R. A knowledge regularized hierarchical approach for emotion cause analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 5618–5628. [Google Scholar]
- Ding, Z.; Xia, R.; Yu, J. ECPE-2D: Emotion-cause pair extraction based on joint two-dimensional representation, interaction and prediction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 3161–3170. [Google Scholar]
- Wei, P.; Zhao, J.; Mao, W. Effective inter-clause modeling for end-to-end emotion-cause pair extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 3171–3181. [Google Scholar]
- Hua, Y.; Huang, Y.; Huang, S.; Feng, T.; Qu, L.; Bain, C.; Bassed, R.; Haf, R. Causal discovery inspired unsupervised domain adaptation for emotion-cause pair extraction. In Findings of the Association for Computational Linguistics: EMNLP 2024; Association for Computational Linguistics: Stroudsburg, PA, USA, 2024; pp. 8139–8156. [Google Scholar]
- Hu, G.; Zhao, Y.; Lu, G. Unifying emotion-oriented and cause-oriented predictions for emotion-cause pair extraction. Neural Netw. 2024, 178, 106431. [Google Scholar] [CrossRef]
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. Llama: Open and efficient foundation language models. arXiv 2023, arXiv:2302.13971. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, A.; Zhang, Z.; Chen, J.; Yasunaga, M.; Yang, D. Is ChatGPT a general-purpose natural language processing task solver? arXiv 2023, arXiv:2302.06476. [Google Scholar]
- Han, R.; Peng, T.; Yang, C.; Wang, B.; Liu, L.; Wan, X. Is information extraction solved by chatgpt? an analysis of performance, evaluation criteria, robustness and errors. arXiv 2023, arXiv:2305.14450. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Q.; Feng, Y.; Ding, Z.; Yang, Z.; Xia, R. Is ChatGPT a good sentiment analyzer? A preliminary study. arXiv 2023, arXiv:2304.04339. [Google Scholar]
- Levy, O.; Seo, M.; Choi, E.; Zettlemoyer, L. Zero-shot relation extraction via reading comprehension. arXiv 2017, arXiv:1706.04115. [Google Scholar] [CrossRef]
- Li, X.; Yin, F.; Sun, Z.; Li, X.; Yuan, A.; Chai, D.; Zhou, M.; Li, J. Entity-relation extraction as multi-turn question answering. arXiv 2019, arXiv:1905.05529. [Google Scholar]
- Li, F.; Peng, W.; Chen, Y.; Wang, Q.; Pan, L.; Lyu, Y.; Zhu, Y. Event extraction as multi-turn question answering. In Findings of the Association for Computational Linguistics: EMNLP 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 829–838. [Google Scholar]
- Liu, J.; Chen, Y.; Liu, K.; Bi, W.; Liu, X. Event extraction as machine reading comprehension. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; pp. 1641–1651. [Google Scholar]
- Mao, Y.; Shen, Y.; Yu, C.; Cai, L. A joint training dual-mrc framework for aspect based sentiment analysis. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 13543–13551. [Google Scholar]
- Chen, S.; Wang, Y.; Liu, J.; Wang, Y. Bidirectional machine reading comprehension for aspect sentiment triplet extraction. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 12666–12674. [Google Scholar]
- Russo, I.; Caselli, T.; Rubino, F.; Boldrini, E.; Martínez-Barco, P. Emocause: An Easy-Adaptable Approach to Emotion Cause Contexts; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2011. [Google Scholar]
- Neviarouskaya, A.; Aono, M. Extracting causes of emotions from text. In Proceedings of the Sixth International Joint Conference on Natural Language Processing, Nagoya, Japan, 14–19 October 2013; pp. 932–936. [Google Scholar]
- Bao, Y.; Ma, Q.; Wei, L.; Zhou, W.; Hu, S. Multi-granularity semantic aware graph model for reducing position bias in emotion-cause pair extraction. arXiv 2022, arXiv:2205.02132. [Google Scholar]
- Ghosal, D.; Majumder, N.; Gelbukh, A.; Mihalcea, R.; Poria, S. Cosmic: Commonsense knowledge for emotion identification in conversations. arXiv 2020, arXiv:2010.02795. [Google Scholar]
- Li, D.; Li, Y.; Zhang, J.; Li, K.; Wei, C.; Cui, J.; Wang, B. C3kg: A chinese commonsense conversation knowledge graph. arXiv 2022, arXiv:2204.02549. [Google Scholar] [CrossRef]
- Sahu, S.K.; Christopoulou, F.; Miwa, M.; Ananiadou, S. Inter-sentence relation extraction with document-level graph convolutional neural network. arXiv 2019, arXiv:1906.04684. [Google Scholar]
- Cheng, Z.; Jiang, Z.; Yin, Y.; Wang, C.; Ge, S.; Gu, Q. A consistent dual-MRC framework for emotion-cause pair extraction. Acm Trans. Inf. Syst. 2023, 41, 1–27. [Google Scholar] [CrossRef]
- Gao, Q.; Hu, J.; Xu, R.; Gui, L.; He, Y.; Wong, K.; Lu, Q. Overview of NTCIR-13 ECA Task. In Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, Tokyo, Japan, 5–8 December 2017. [Google Scholar]
- Singh, A.; Hingane, S.; Wani, S.; Modi, A. An end-to-end network for emotion-cause pair extraction. arXiv 2021, arXiv:2103.01544. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Wang, S.-M.; Ku, L.-W. ANTUSD: A large Chinese sentiment dictionary. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia, 23–28 May 2016; pp. 2697–2702. [Google Scholar]
- Chen, S.; Mao, K. A graph attention network utilizing multi-granular information for emotion-cause pair extraction. Neurocomputing 2023, 543, 126252. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, B.; Tang, K.; Zhang, H.; Cui, X.; Wang, Z. A knowledge-guided graph attention network for emotion-cause pair extraction. Knowl.-Based Syst. 2024, 286, 111342. [Google Scholar] [CrossRef]
- Shang, X.; Chen, C.; Chen, Z.; Ma, Q. Modularized mutuality network for emotion-cause pair extraction. IEEE/ACM Trans. Audio Speech Lang. Process. 2022, 31, 539–549. [Google Scholar] [CrossRef]
- Li, S.; Sun, D. Joint Feature Encoding and Task Alignment Mechanism for Emotion-Cause Pair Extraction. Comput. Mater. Contin. 2025, 82, 1069–1086. [Google Scholar] [CrossRef]
- Mu, S.; Liu, Y.; Feng, S.; Yang, X.; Wang, D.; Zhang, Y. MEKiT: Multi-source Heterogeneous Knowledge Injection Method via Instruction Tuning for Emotion-Cause Pair Extraction. arXiv 2025, arXiv:2507.14887. [Google Scholar]
- Liu, Z.; Wen, C.; Li, D.; Fu, Z.; Kong, X.; Liu, S. Large language model augmented multi-task learning network with inter-clause modeling for emotion-cause pair extraction. Inf. Fusion 2025, 117, 103583. [Google Scholar] [CrossRef]



| Statistical Data | Chinese | English |
|---|---|---|
| Number of Documents | 1975 | 2843 |
| Number of Emotion–Cause Pairs | 2167 | 3215 |
| Average Clauses per Document | 14.77 | 7.69 |
| Documents with One Emotion–Cause Pair | 1746 | 2537 |
| Documents with Two Emotion–Cause Pairs | 177 | 256 |
| Documents with More Than Two Emotion–Cause Pairs | 22 | 50 |
| Model | Emotion Extraction | Cause Extraction | Emotion–Cause Pair Extraction | ||||||
|---|---|---|---|---|---|---|---|---|---|
| P (%) | R (%) | F1 (%) | P (%) | R (%) | F1 (%) | P (%) | R (%) | F1 (%) | |
| Indep | 83.75 | 80.71 | 82.10 | 69.02 | 56.73 | 62.05 | 68.32 | 50.82 | 58.18 |
| Inter-EC | 83.64 | 81.07 | 82.30 | 70.41 | 60.83 | 65.07 | 67.21 | 57.05 | 61.28 |
| Inter-CE | 84.94 | 81.22 | 83.00 | 68.09 | 56.34 | 61.51 | 69.02 | 51.35 | 59.01 |
| ECPE-2D | 86.27 | 92.21 | 89.10 | 73.36 | 69.34 | 71.23 | 72.92 | 65.44 | 68.89 |
| GANU | 86.34 | 89.72 | 87.91 | 74.10 | 74.64 | 74.33 | 72.95 | 71.02 | 71.89 |
| RANKCP | 91.23 | 89.99 | 90.57 | 74.61 | 77.88 | 76.15 | 71.19 | 76.30 | 73.60 |
| GAT-ECPE | 90.98 | 91.03 | 90.99 | 76.17 | 78.72 | 77.34 | 72.65 | 77.52 | 74.92 |
| MMN | 90.37 | 87.85 | 89.07 | 79.01 | 75.54 | 77.21 | 76.11 | 73.96 | 75.02 |
| MGSAG | 92.08 | 92.11 | 92.09 | 79.79 | 74.68 | 77.12 | 77.43 | 73.21 | 75.21 |
| JFTA | 90.13 | 88.80 | 89.44 | 78.78 | 77.01 | 77.83 | 76.41 | 75.81 | 76.05 |
| LLM-MTLN | 91.24 | 89.57 | 90.39 | 78.45 | 79.01 | 78.71 | 75.18 | 77.29 | 76.20 |
| KESIF | 96.68 | 89.91 | 93.20 | 78.94 | 77.96 | 78.45 | 82.26 | 73.45 | 77.61 |
| Model | Emotion Extraction | Cause Extraction | Emotion–Cause Pair Extraction | ||||||
|---|---|---|---|---|---|---|---|---|---|
| P (%) | R (%) | F1 (%) | P (%) | R (%) | F1 (%) | P (%) | R (%) | F1 (%) | |
| Indep | 71.73 | 68.11 | 69.66 | 61.64 | 51.74 | 56.11 | 49.48 | 40.42 | 44.32 |
| Inter-EC | 70.08 | 68.85 | 69.39 | 63.70 | 52.45 | 57.37 | 49.50 | 42.72 | 45.68 |
| Inter-CE | 72.38 | 67.45 | 69.80 | 62.53 | 51.25 | 56.18 | 50.27 | 40.72 | 44.83 |
| ECPE-2D | 74.35 | 69.68 | 71.89 | 64.91 | 53.53 | 58.55 | 60.49 | 43.84 | 50.73 |
| RANKCP | 61.32 | 66.17 | 63.64 | 54.82 | 57.32 | 56.01 | 44.94 | 48.32 | 46.52 |
| MEKIT | – | – | – | – | – | – | 65.04 | 58.31 | 61.49 |
| KESIF | 83.80 | 73.92 | 78.55 | 69.21 | 59.51 | 64.00 | 69.81 | 66.75 | 68.02 |
| Pairs | Model | P (%) | R (%) | F1 (%) |
|---|---|---|---|---|
| One per doc | RANKCP | 72.32 | 79.07 | 75.56 |
| KESIF | 75.12 | 76.34 | 75.73 | |
| Two or more per doc | RANKCP | 67.62 | 51.46 | 58.67 |
| KESIF | 72.69 | 55.02 | 62.78 |
| Ablation Study | ECPE | EE | CE |
|---|---|---|---|
| F1 (%) | F1 (%) | F1 (%) | |
| KESIF | 77.42 | 93.07 | 76.86 |
| – w/o ATOMIC | 72.22 | 89.08 | 73.42 |
| – w/o GAT | 74.77 | 92.69 | 75.98 |
| – w/o Emotion-driven cause | 75.15 | 92.64 | 74.81 |
| – w/o Cause-driven emotion | 75.99 | 92.36 | 76.64 |
| – w/o Emotion filtering | 77.01 | 92.50 | 76.10 |
| Document | Golden | GAT-ECPE | KESIF |
|---|---|---|---|
| (c1) To rescue the woman as soon as possible | |||
| (c2) The commander immediately formulated a rescue plan | |||
| (c3) The first team laid an air cushion downstairs | |||
| (c4) And evacuated irrelevant personnel around | (c12, c10) | (c12, c10) | (c12, c10) |
| (c5) Another team quickly climbed to the 6th floor | |||
| (c6) To persuade the woman inside the building | (c12, c9) | (c12, c9) | (c12, c9) |
| (c7) During the persuasion process | |||
| (c8) The firefighter learned that | (c12, c11) | (c12, c10) | (c12, c11) |
| (c9) The woman was owed wages | |||
| (c10) The family was in urgent need of money | |||
| (c11) The life pressure was very high | |||
| (c12) She had to attempt suicide by jumping off the building out of helplessness |
| Document | Golden | RANKCP | KESIF |
|---|---|---|---|
| (c1) 18 years ago | |||
| (c2) Chengwei Sun killed his uncle | |||
| (c3) and then began to flee | |||
| (c4) He changed his name and got married | |||
| (c5) but he could not escape the law | |||
| (c6) He said that for 18 years | |||
| (c7) he has been living in fear | |||
| (c1) 25 years ago | |||
| (c2) my mother went missing | |||
| (c3) In April | |||
| (c4) I got news from my friends | |||
| (c5) and finally found my mother in Henan Province | |||
| (c6) In addition to happiness | |||
| (c7) I also worry about my mother’s difficulty in settling down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, S.; Wang, Y. Knowledge Enhancement and Semantic Information-Fused Emotion–Cause Pair Extraction. Information 2026, 17, 42. https://doi.org/10.3390/info17010042
Li S, Wang Y. Knowledge Enhancement and Semantic Information-Fused Emotion–Cause Pair Extraction. Information. 2026; 17(1):42. https://doi.org/10.3390/info17010042
Chicago/Turabian StyleLi, Shi, and Yuqian Wang. 2026. "Knowledge Enhancement and Semantic Information-Fused Emotion–Cause Pair Extraction" Information 17, no. 1: 42. https://doi.org/10.3390/info17010042
APA StyleLi, S., & Wang, Y. (2026). Knowledge Enhancement and Semantic Information-Fused Emotion–Cause Pair Extraction. Information, 17(1), 42. https://doi.org/10.3390/info17010042

