Integrating VIIRS Fire Detections and ERA5-Land Reanalysis for Modeling Wildfire Probability in Arid Mountain Systems of the Arabian Peninsula
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Schemetic Workflow
2.3. Data Acquisition and Inputs
2.3.1. Satellite, Reanalysis, and Ancillary Datasets
2.3.2. Data Preprocessing and Harmonization
2.3.3. Variable Derivation and Feature Engineering
2.4. Model Development and Evaluation
2.4.1. Model Architecture and Training Strategy
2.4.2. Training–Testing Framework
2.4.3. Performance Metrics
2.4.4. Threshold Optimization and Confusion Analysis
2.4.5. Calibration, Validation, and Reliability
2.4.6. Feature Importance and Model Interpretability Framework
2.5. Spatiotemporal and Statistical Analyses
2.5.1. Monthly and Seasonal Probability Distributions
2.5.2. Seasonality and Repeated-Measures Testing
2.5.3. Physiographic Influence Tests
2.5.4. Correlations with Vegetation and Elevation
2.5.5. Temporal Trend Analysis (Kendall’s τ and Sen’s Slope)
2.5.6. Ecological Gradient and Spatial Association
2.5.7. Spatial Autocorrelation Diagnostics (Moran’s I)
2.6. Seasonal Shift and Timing Analysis Framework
2.7. Analytical Tools and Libraries
3. Results
3.1. Model Performance
3.1.1. Predictive Accuracy and Discrimination
3.1.2. Calibration and Reliability
3.1.3. Threshold-Based Classification Metrics
3.1.4. Independent Validation with Burn Pixels
3.1.5. Feature Importance and Model Interpretation
3.1.6. Spatial Autocorrelation Diagnostics
3.2. Spatiotemporal Distribution of Wildfire Probability
3.3. Kendall’s τ Trend by Calendar Month (2012–2025)
3.4. Seasonal Shift and Timing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
- VIIRS Active Fire (Version 2 & 2.0 NRT) from NASA/NOAA (Suomi-NPP, NOAA-20): 375 m resolution, 2012–2025. Available at: https://www.earthdata.nasa.gov/data/catalog/lancemodis-vnp14-nrt-2 (accessed on 1 July 2025).
- ERA5-Land Reanalysis from the Copernicus Climate Data Store (CDS): 0.1° (~9 km) monthly means, January 2012–December 2025 (variables: d2m, t2m, skt, swvl1, slhf, sshf, ssrd, u10, v10, tp, lai_hv, lai_lv). Available at: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=download (accessed on 15 July 2025).
- Copernicus DEM GLO30: 30 m (static topographic dataset) from the European Space Agency/Copernicus Service. Available at: https://portal.opentopography.org/raster?opentopoID=OTSDEM.032021.4326.3 (accessed on 20 July 2025).
- ESA CCI Land Cover: 300 m annual land cover and land form classification (1992–2022) from the ESA Climate Change Initiative. Available at: https://www.esa-landcover-cci.org/ (accessed on 25 July 2025).
- COD-AB Administrative Boundaries: Regional/subnational boundaries for Saudi Arabia (2024 edition) from the Humanitarian Data Exchange (HDX). Available at: https://data.humdata.org/dataset/cod-ab-sau (accessed on 20 June 2025).
Acknowledgments
Conflicts of Interest
Abbreviations
| AUC-ROC | Area Under the Receiver Operating Characteristic Curve |
| AUC-PR | Area Under the Precision–Recall Curve |
| DTD | Dew-Point Temperature Deficit |
| ERA5-Land | Fifth Generation ECMWF Reanalysis for Land Variables |
| ESA | European Space Agency |
| HDX | Humanitarian Data Exchange |
| LAI_lv/LAI_hv | Leaf Area Index of Low/High Vegetation |
| MCC | Matthews Correlation Coefficient |
| NRT | Near Real Time |
| RF | Random Forest |
| ROI | Region of Interest |
| SHAP | SHapley Additive exPlanations |
| SSP | Shared Socioeconomic Pathway |
| VIIRS | Visible Infrared Imaging Radiometer Suite |
| VIF | Variance Inflation Factor |
References
- Al-Rowaily, S.L.; El-Bana, M.I.; Al-Bakre, D.A.; Assaeed, A.M.; Hegazy, A.K.; Ali, M.B. Effects of Open Grazing and Livestock Exclusion on Floristic Composition and Diversity in Natural Ecosystem of Western Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 430–437. [Google Scholar] [CrossRef]
- Saudi Vision 2030. Overview. Available online: https://www.vision2030.gov.sa/en/overview (accessed on 1 October 2025).
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophys. Res. Lett. 2018, 46, 326–336. [Google Scholar] [CrossRef]
- Forkel, M.; Andela, N.; Harrison, S.P.; Lasslop, G.; van Marle, M.; Chuvieco, E.; Dorigo, W.; Forrest, M.; Hantson, S.; Heil, A.; et al. Emergent Relationships with Respect to Burned Area in Global Satellite Observations and Fire-Enabled Vegetation Models. Biogeosciences 2019, 16, 57–76. [Google Scholar] [CrossRef]
- Almendra-Martín, L.; Martínez-Fernández, J.; González-Zamora, Á.; Benito-Verdugo, P.; Herrero-Jiménez, C.M. Agricultural Drought Trends on the Iberian Peninsula: An Analysis Using Modeled and Reanalysis Soil Moisture Products. Atmosphere 2021, 12, 236. [Google Scholar] [CrossRef]
- Quintano, C.; Fernandez-Manso, A.; Roberts, D.A. Burn Severity Mapping from Landsat MESMA Fraction Images and Land Surface Temperature. Remote Sens. Environ. 2016, 190, 83–95. [Google Scholar] [CrossRef]
- Archibald, S.; Lehmann, C.E.R.; Gómez-Dans, J.L.; Bradstock, R.A. Defining Pyromes and Global Syndromes of Fire Regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442–6447. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Ismail, M.; Ehsan, M.A.; Islam, M.N.; Abid, M.A.; O’Brien, E.; Kamil, S.; Rashid, I.U.; et al. Projected Changes in Climate Extremes Using CMIP6 Simulations over SREX Regions. Earth Syst. Environ. 2021, 5, 481–497. [Google Scholar] [CrossRef]
- ERA5-Land Monthly Averaged Data from 1950 to Present. European Centre for Medium-Range Weather Forecasts. 2019. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview (accessed on 12 October 2025).
- European Space Agency (ESA). Copernicus DEM GLO-30 Dataset Documentation; European Space Agency: Paris, France, 2023; Available online: https://dataspace.copernicus.eu/sites/default/files/media/files/2024-06/geo1988-copernicusdem-spe-002_producthandbook_i5.0.pdf (accessed on 2 October 2025).
- NASA/NOAA. VIIRS Active Fire Products User Guide (Version 2.0); NASA Earth Science Data Systems: Greenbelt, MD, USA, 2024. Available online: https://lpdaac.usgs.gov/documents/427/VNP14_User_Guide_V1.pdf (accessed on 4 October 2025).
- Almazroui, M. Rainfall Trends and Extremes in Saudi Arabia in Recent Decades. Atmosphere 2020, 11, 964. [Google Scholar] [CrossRef]
- World Bank Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/country/saudi-arabia (accessed on 7 October 2025).
- Saharwardi, M.S.; Dasari, H.P.; Hassan, W.U.; Gandham, H.; Pathak, R.; Zampieri, M.; Ashok, K.; Hoteit, I. Projected Increase in Droughts over the Arabian Peninsula and Associated Uncertainties. Sci. Rep. 2025, 15, 1711. [Google Scholar] [CrossRef]
- Pathak, R.; Dasari, H.P.; Ashok, K.; Hoteit, I. Dynamics of Intensification of Extreme Precipitation Events over the Arabian Peninsula Derived from CMIP6 Simulations. NPJ Clim. Atmos. Sci. 2025, 8, 126. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Moreira-Muñoz, A.; Kolden, C.A.; Chávez, R.O.; Muñoz, A.A.; Salinas, F.; González-Reyes, Á.; Rocco, R.; de la Barrera, F.; Williamson, G.J.; et al. Human–Environmental Drivers and Impacts of the Globally Extreme 2017 Chilean Fires. AMBIO 2018, 48, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams, A.P. Impact of Anthropogenic Climate Change on Wildfire across Western US Forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Justice, C.O.; Roman, M.O.; Csiszar, I.; Vermote, E.F.; Wolfe, R.E.; Hook, S.J.; Friedl, M.; Wang, Z.; Schaaf, C.B.; Miura, T.; et al. Land and cryosphere products from Suomi NPP VIIRS: Overview and status. J. Geophys. Res. Atmos. 2013, 118, 9753–9765. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, V.; Fonte, C.C.; Hoffmann, P.; Bechtel, B.; Rechid, D.; Boehner, J. Comparison of ESA Climate Change Initiative Land Cover to CORINE Land Cover over Eastern Europe and the Baltic States from a Regional Climate Modeling Perspective. Int. J. Appl. Earth Obs. Geoinf. 2020, 94, 102221. [Google Scholar] [CrossRef]
- ESA Climate Change Initiative (CCI). Land Cover v2.1.1 Dataset (1992–2022); European Space Agency: Frascati, Italy, 2023; Available online: https://climate.esa.int/en/projects/land-cover/ (accessed on 15 October 2025).
- Humanitarian Data Exchange (HDX). Common Operational Data on Administrative Boundaries (COD-AB), Saudi Arabia Edition 2024; United Nations OCHA: Geneva, Switzerland, 2024; Available online: https://data.humdata.org/dataset/cod-ab-sau (accessed on 15 October 2025).
- Hijmans, R.J. terra: Spatial Data Analysis in R; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://cran.r-project.org/package=terra (accessed on 15 October 2025).
- Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://cran.r-project.org/package=ncdf4 (accessed on 16 October 2025).
- Eaton, B.; Gregory, J.; Drach, B.; Taylor, K.; Hankin, S.; Caron, J.; Signell, R.; Bentley, P.; Rappa, G. NetCDF Climate and Forecast (CF) Metadata Conventions Version 1.8. CF Conventions. 2019. Available online: https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html (accessed on 11 December 2025).
- EPSG Geodetic Parameter Dataset. EPSG: 4326—WGS 84 Coordinate Reference System; International Association of Oil & Gas Producers (OGP): London, UK, 2023; Available online: https://epsg.org (accessed on 16 October 2025).
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; pp. 73–94. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A Systematic Analysis of Performance Measures for Classification Tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Niculescu-Mizil, A.; Caruana, R. Predicting Good Probabilities with Supervised Learning. In Proceedings of the 22nd International Conference on Machine Learning—ICML ’05, Bonn, Germany, 7–11 August 2005; pp. 625–632. [Google Scholar] [CrossRef]
- DeGroot, M.H.; Fienberg, S.E. The comparison and evaluation of forecasters. J. R. Stat. Soc. Ser. D 1983, 32, 12–22. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Academic Press: San Diego, CA, USA, 2019; pp. 123–180. [Google Scholar]
- Conover, W.J. Practical Nonparametric Statistics, 3rd ed.; Wiley: New York, NY, USA, 1999; pp. 351–380. [Google Scholar]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Schoof, J.T.; Pryor, S.C.; Robeson, S.M. Downscaling Daily Maximum and Minimum Temperatures in the Midwestern USA: A Hybrid Empirical Approach. Int. J. Climatol. 2006, 27, 439–454. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Fisher, N.I. Statistical Analysis of Circular Data; Cambridge University Press: Cambridge, UK, 1993; pp. 15–95. [Google Scholar]
- Pewsey, A.; Neuhauser, M.; Ruxton, G.D. Circular Statistics in R; Oxford University Press: Oxford, UK, 2013; pp. 101–145. [Google Scholar]
- Zhang, X.; Vincent, L.A.; Hogg, W.D.; Niitsoo, A. Temperature and precipitation trends in Canada during the 20th century. Atmosphere-Ocean 2000, 38, 395–429. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- Andrianarivony, H.S.; Akhloufi, M.A. Machine Learning and Deep Learning for Wildfire Spread Prediction: A Review. Fire 2024, 7, 482. [Google Scholar] [CrossRef]
- Rodrigues, M.; de la Riva, J. An Insight into Machine-Learning Algorithms to Model Human-Caused Wildfire Occurrence. Environ. Model. Softw. 2014, 57, 192–201. [Google Scholar] [CrossRef]
- Pausas, J.G.; Ribeiro, E. Fire and Plant Diversity at the Global Scale. Global Ecology and Biogeography 2017, 26, 889–897. [Google Scholar] [CrossRef]
- Battaglia, M.; Smith, F.W.; Shepperd, W.D. Predicting Mortality of Ponderosa Pine Regeneration after Prescribed Fire in the Black Hills, South Dakota, USA. Int. J. Wildland Fire 2009, 18, 176–190. [Google Scholar] [CrossRef]
- Laris, P.; Wardell, D.A. Good, Bad or “Necessary Evil”? Reinterpreting the Colonial Burning Experiments in the Savanna Landscapes of West Africa. Geogr. J. 2006, 172, 271–290. [Google Scholar] [CrossRef]
- Altomare, M.; Vasconcelos, H.L.; Raymundo, D.; Lopes, S.; Vale, V.; Prado-Junior, J. Assessing the Fire Resilience of the Savanna Tree Component through a Functional Approach. Acta Oecologica 2021, 111, 103728. [Google Scholar] [CrossRef]
- Azizi, G.; Arsalani, M.; Bräuning, A.; Moghimi, E. Precipitation Variations in the Central Zagros Mountains (Iran) since A.D. 1840 Based on Oak Tree Rings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 386, 96–103. [Google Scholar] [CrossRef]
- Bianchi, L.O.; Villalba, R.; Oddi, F.J.; Mundo, I.A.; Radins, M.; Amoroso, M.M.; Srur, A.M.; Bonada, A. Climate, Landscape, and Human Influences on Fire in Southern Patagonia: A Basin-Scale Approach. For. Ecol. Manag. 2023, 539, 121015. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Chen, X.; Kang, S.; Hu, Y.; Yang, J. Temporal and Spatial Analysis of Vegetation Fire Activity in the Circum-Arctic during 2001–2020. Res. Cold Arid. Reg. 2023, 15, 48–56. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A.D. Climate Change and Future Fire Regimes: Examples from California. Geosciences 2016, 6, 37. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Boschetti, L.; Zubkova, M.; Kolden, C.A. Global Patterns of Interannual Climate–Fire Relationships. Glob. Change Biol. 2018, 24, 5164–5175. [Google Scholar] [CrossRef] [PubMed]









| Dataset | Source/Provider | Spatial Resolution | Temporal Coverage | Key Variables/Purpose |
|---|---|---|---|---|
| VIIRS Active Fire (V2 & V2.0 NRT) | NASA/NOAA (Suomi-NPP, NOAA-20) | 375 m | Jan 2012–Jul 2025 | Fire-pixel detections; confidence and acquisition time |
| ERA5-Land Reanalysis | Copernicus Climate Data Store (CDS) | 0.1° (~9 km) | Jan 2012–Dec 2025 | (d2m, t2m, skt, swvl1, slhf, sshf, ssrd, u10, v10, tp, lai_{hv}, lai_{lv}) |
| Copernicus DEM GLO30 | European Space Agency/Copernicus Service | 30 m | Static | Elevation, slope, aspect, terrain derivatives |
| ESA CCI Land-Cover | European Space Agency Climate Change Initiative | 300 m | Annual (1992–2022) | Land-cover and landform classification |
| Wild Fire Data | MEWA, Saudi Arabia. | – | May & June 2025 | Wild Fire |
| COD-AB Administrative Boundaries | Humanitarian Data Exchange (HDX) | – | 2024 edition | Regional and subnational boundaries for ROI definition |
| Metric | Value |
|---|---|
| AUC-ROC | 0.964 |
| AUC-ROC (95% CI) | 0.959–0.969 |
| AUC-PR | 0.902 |
| Threshold (Youden) | 0.349 |
| Accuracy | 0.968 |
| Sensitivity (Recall) | 0.978 |
| Specificity | 0.925 |
| Precision | 0.983 |
| F1-score | 0.980 |
| Balanced Accuracy | 0.951 |
| Matthews CC (MCC) | 0.895 |
| Brier Score | 0.030 |
| Truth | Predicted = 0 | Predicted = 1 | Total |
|---|---|---|---|
| 0 (No Fire) | 13,950 | 246 | 14,196 |
| 1 (Fire) | 316 | 3014 | 3330 |
| Threshold | Accuracy | Specificity | Precision | Brier |
|---|---|---|---|---|
| 0.1–0.5 | 0.870 | 0.870 | 0.000 | 0.0014 |
| 0.6–0.7 | 0.870 | 0.870 | 0.000 | 0.0015 |
| 0.8–0.9 | 0.860 | 0.860 | 0.000 | 0.0070 |
| Month | n | Mean | Median | SD |
|---|---|---|---|---|
| May (5) | 160,437 | 0.870 | 1.000 | 0.317 |
| June (6) | 6228 | 0.968 | 1.000 | 0.046 |
| Decile | n | Events | Nonevents | Event Rate | Mean Prob. | Lift | Cumulative Events (%) |
|---|---|---|---|---|---|---|---|
| (0.991–1.000] | 107,188 | 107,188 | 0 | 1.00 | 1.00 | 1.00 | 64.3 |
| (0.073–0.991] | 37,875 | 37,875 | 0 | 1.00 | 0.97 | 1.00 | 87.0 |
| [0.029–0.073] | 21,602 | 21,602 | 0 | 1.00 | 0.07 | 1.00 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Al-Qthanin, R.; Islam, Z. Integrating VIIRS Fire Detections and ERA5-Land Reanalysis for Modeling Wildfire Probability in Arid Mountain Systems of the Arabian Peninsula. Information 2026, 17, 13. https://doi.org/10.3390/info17010013
Al-Qthanin R, Islam Z. Integrating VIIRS Fire Detections and ERA5-Land Reanalysis for Modeling Wildfire Probability in Arid Mountain Systems of the Arabian Peninsula. Information. 2026; 17(1):13. https://doi.org/10.3390/info17010013
Chicago/Turabian StyleAl-Qthanin, Rahmah, and Zubairul Islam. 2026. "Integrating VIIRS Fire Detections and ERA5-Land Reanalysis for Modeling Wildfire Probability in Arid Mountain Systems of the Arabian Peninsula" Information 17, no. 1: 13. https://doi.org/10.3390/info17010013
APA StyleAl-Qthanin, R., & Islam, Z. (2026). Integrating VIIRS Fire Detections and ERA5-Land Reanalysis for Modeling Wildfire Probability in Arid Mountain Systems of the Arabian Peninsula. Information, 17(1), 13. https://doi.org/10.3390/info17010013

