A Comparative Analysis of Parkinson’s Disease Diagnosis Approaches Using Drawing-Based Datasets: Utilizing Large Language Models, Machine Learning, and Fuzzy Ontologies
Abstract
1. Introduction
- -
- Large Language Models (LLMs): ChatGPT is used for classifying PD and healthy individuals based on structured handwriting features.
- -
- Fuzzy Ontology-Based Reasoning: Implemented in Protégé using OWL and fuzzy logic, this method supports human-readable, rule-based decision-making.
- -
- Traditional Supervised ML Models: Including Random Forest classifiers trained on dynamic and kinematic handwriting signal features.
- Supervised machine learning (ML) models are expected to achieve the highest classification accuracy, due to their ability to optimally learn from structured and clean feature sets.
- The fuzzy ontology-based system is expected to provide the greatest interpretability and robustness, particularly in scenarios involving uncertainty or incomplete information, thanks to its use of expert-defined symbolic rules.
- The large language model (LLM) is anticipated to serve as a competitive baseline, effectively bridging human-readable reasoning with numeric feature analysis, and offering moderate performance with high usability.
2. Background Knowledge
2.1. Parkinson’s Disease and Artistic Behavior
2.2. Feature Extraction from Handwriting and Drawing Tasks
- Entropy: Measures complexity or randomness of motion.
- Smoothness: Reflects the fluidity of movement; lower values suggest tremor or rigidity.
- Kurtosis: Captures the sharpness or flatness of motion peaks.
- Wave Energy: Represents the total signal energy during a stroke.
- Average Pressure: Measures the pen tip’s applied force.
- Average Speed: Reflects overall drawing velocity.
- Segment Length: Tracks the length of individual stroke segments.
2.3. Supervised Machine Learning
2.4. Large Language Models (LLMs)
2.5. Fuzzy Ontologies and Semantic Reasoning in Protégé
2.6. Evaluation Metrics and Statistical Testing
3. Related Work
3.1. PD and Artistic Behavior
3.2. Art and Other Neurodegenerative Diseases
3.3. Intelligent Systems and Ontologies in Neurodegenerative Disease Research
4. Materials and Methods
4.1. Datasets
4.2. Data Recording
4.2.1. Data Augmentation
4.2.2. Data Validation
4.3. ChatGPT
4.4. Fuzzy Ontology
4.4.1. FWP Wave
4.4.2. FSP SPIRAL
4.4.3. FSPHD SPIRAL
4.5. ML
5. Results
5.1. Dataset 1
5.1.1. Healthy vs. Parkinsonian: Feature Distribution and Separability
5.1.2. Model Performance Comparison (Dataset-1)
5.1.3. Summary Interpretation
5.2. Dataset-2
5.2.1. Comparative Analysis of Healthy Vs. Parkinsonian Classification
5.2.2. Interpretation
5.3. Dataset 3
5.3.1. Analysis of Parkinsonian vs. Healthy Using Spiral Drawing Test Data
5.3.2. Interpretation
6. Discussion
- Limited sample size: The real-world datasets used for training and evaluation were relatively small. Even with CTGAN-generated synthetic data, the training size may be insufficient to fully capture the variability present in Parkinsonian motor patterns. This can affect the generalizability of the ML models.
- Reliance on synthetic data: While CTGAN was used to generate high-quality synthetic samples, synthetic augmentation may not perfectly replicate the subtle nuances of true clinical data. This introduces potential bias in model learning.
- Ontology scalability: Fuzzy ontology models rely on manually defined rules and thresholds. These rules may not be scaled well to broader datasets or new feature sets without significant human tuning.
- LLM constraints: ChatGPT was used in a zero-shot mode, without clinical fine-tuning. As such, its performance may underestimate what could be achieved with domain-adapted large language models.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
ASD | Artificial Intelligence |
ASD | Autism Spectrum Disorder |
ChatGPT | Chat Generative Pre-Trained Transformer |
CTGAN | Conditional Tabular Generative Adversarial Network |
ECDF | Empirical Cumulative Distribution Function |
FN | False Negative |
FP | False Positive |
FSP | Fuzzy Spiral Parkinson |
FSPHD | Fuzzy Spiral Parkinson Hand Drawn |
FTD | Frontotemporal Dementia |
FWP | Fuzzy Wave Parkinson |
KDE | Kernel Density Estimate |
LLM | Large Language Models |
ML | Machine Learning |
OWL | Web Ontology Language |
PCA | Principal Component Analysis |
PD | Parkinson’s Disease |
SHAP | SHapley Additive exPlanations |
TN | True Negative |
TP | True Positive |
USMLE | United States Medical Licensing Examination |
XAI | Explainable Artificial Intelligence |
References
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Acosta, L.M.Y. Creativity and neurological disease. Curr. Med. Group LLC 1 2014, 14, 464. [Google Scholar] [CrossRef]
- Shimura, H.; Tanaka, R.; Urabe, T.; Tanaka, S.; Hattori, N. Art and Parkinson’s disease: A dramatic change in an artist’s style as an initial symptom. J. Neurol. 2012, 259, 879–881. [Google Scholar] [CrossRef]
- Baloyannis, S.J. Painting as an open window to brain disorders. J. Neurol. Stroke 2020, 10, 101–103. [Google Scholar] [CrossRef]
- Kleiner-Fisman, G.; Black, S.E.; Lang, A.E. Neurodegenerative Disease and the Evolution of Art: The Effects of Presumed Corticobasal Degeneration in a Professional Artist. Mov. Disord. 2003, 18, 294–302. [Google Scholar] [CrossRef]
- Mendez, M.F. Dementia as a window to the neurology of art. Med. Hypotheses 2004, 63, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mell, J.C.; Howard, S.M.; Miller, B.L. Art and the brain. Neurology 2003, 60, 1707–1710. [Google Scholar] [CrossRef]
- Bogousslavsky, J. Creativity in Painting and Style in Brain-damaged Artists. Int. Rev. Neurobiol. 2006, 74, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Bogousslavsky, J. Artistic creativity, style and brain disorders. Eur. Neurol. 2005, 54, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Piechowski-Jozwiak, B.; Bogousslavsky, J. Neurological diseases in famous painters. Prog. Brain Res. 2013, 203, 255–275. [Google Scholar] [CrossRef]
- Piechowski-Jozwiak, B.; Bogousslavsky, J. Dementia and Change of Style: Willem de Kooning-Obliteration of Disease Patterns? S. Karger AG: Basel, Switzerland, 2018. [Google Scholar] [CrossRef]
- Piechowski-Jozwiak, B.; Bogousslavsky, J. Abstract Expressionists and Brain Disease; S. Karger AG: Basel, Switzerland, 2018. [Google Scholar] [CrossRef]
- Solso, R.L. Brain Activities in a Skilled versus a Novice Artist: An fMRI Study. Leonardo 2001, 34, 31–34. [Google Scholar] [CrossRef]
- Pelowski, M.; Spee, B.T.M.; Arato, J.; Dörflinger, F.; Ishizu, T.; Richard, A. Can we really ‘read’ art to see the changing brain? A review and empirical assessment of clinical case reports and published artworks for systematic evidence of quality and style changes linked to damage or neurodegenerative disease. Phys. Life Rev. 2022, 43, 32–95. [Google Scholar] [CrossRef]
- Bäzner, H.; Riederer, C. Dystonia in Arts and Artists. In Treatment of Dystonia; Cambridge University Press: Cambridge, UK, 2018; pp. 92–96. [Google Scholar] [CrossRef]
- Kotsavasiloglou, C.; Kostikis, N.; Hristu-Varsakelis, D.; Arnaoutoglou, M. Machine learning-based classification of simple drawing movements in Parkinson’s disease. Biomed. Signal Process. Control 2017, 31, 174–180. [Google Scholar] [CrossRef]
- Zham, P.; Arjunan, S.P.; Raghav, S.; Kumar, D.K. Efficacy of Guided Spiral Drawing in the Classification of Parkinson’s Disease. IEEE J. Biomed. Health Inform. 2018, 22, 1648–1652. [Google Scholar] [CrossRef]
- Gil-Martín, M.; Montero, J.M.; San-Segundo, R. Parkinson’s disease detection from drawing movements using convolutional neural networks. Electronics 2019, 8, 907. [Google Scholar] [CrossRef]
- Impedovo, D.; Pirlo, G. Online Handwriting Analysis for the Assessment of Alzheimer’s Disease and Parkinson’s Disease: Overview and Experimental Investigation. Front. Pattern Recognit. Artif. Intell. 2019, 5, 113–128. [Google Scholar] [CrossRef]
- Impedovo, D.; Pirlo, G. Dynamic Handwriting Analysis for the Assessment of Neurodegenerative Diseases: A Pattern Recognition Perspective. IEEE Rev. Biomed. Eng. 2018, 12, 209–220. [Google Scholar] [CrossRef]
- Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608. Available online: https://arxiv.org/abs/1702.08608 (accessed on 16 September 2025).
- Dorsey, E.R.; Elbaz, A.; Nichols, E.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, J.-Y.J.; et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Koletis, A.; Bitilis, P.; Zafeiropoulos, N.; Kotis, K. Can Semantics Uncover Hidden Relations between Neurodegenerative Diseases and Artistic Behaviors? Appl. Sci. 2023, 13, 4287. [Google Scholar] [CrossRef]
- Chandra, J.; Muthupalaniappan, S.; Shang, Z.; Deng, R.; Lin, R.; Tolkova, I.; Butts, D.; Sul, D.; Marzouk, S.; Bose, S.; et al. Screening of parkinson’s disease using geometric features extracted from spiral drawings. Brain Sci. 2021, 11, 1297. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Desrosiers, C.; Frasnelli, J. Machine Learning for the Diagnosis of Parkinson’s Disease: A Review of Literature. Front. Aging Neurosci. 2021, 13, 633752. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. Available online: http://scikit-learn.sourceforge.net (accessed on 16 September 2025).
- Sallam, M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare 2023, 11, 887. [Google Scholar] [CrossRef]
- Bobillo, F.; Straccia, U. Fuzzy ontology representation using OWL 2. Int. J. Approx. Reason. 2011, 52, 1073–1094. [Google Scholar] [CrossRef]
- Mitra, P.; Wiederhold, G. An Ontology-Composition Algebra. In Handbook on Ontologies; Staab, S., Studer, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 93–113. [Google Scholar] [CrossRef]
- Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef]
- Inzelberg, R. The awakening of artistic creativity and Parkinson’s disease. Behav. Neurosci. 2013, 127, 256–261. [Google Scholar] [CrossRef]
- Canesi, M.; Rusconi, M.L.; Moroni, F.; Ranghetti, A.; Cereda, E.; Pezzoli, G. Creative Thinking, Professional Artists, and Parkinson’s Disease. J. Park. Dis. 2016, 6, 239–246. [Google Scholar] [CrossRef]
- Lauring, J.O.; Pelowski, M.; Specker, E.; Ishizu, T.; Haugbøl, S.; Hollunder, B.; Leder, H.; Stender, J.; Kupers, R. Parkinson’s disease and changes in the appreciation of art: A comparison of aesthetic and formal evaluations of paintings between PD patients and healthy controls. Brain Cogn. 2019, 136, 103597. [Google Scholar] [CrossRef]
- Harrison, C.R.; Carton, A.M.; Brotherhood, E.V.; Hardy, C.J.D.; Cohen, M.H.; Warren, J.D.; Crutch, S.J. Profiles in paint: Contrasting responses to a common artistic exercise by people with different dementias. Arts Health 2019, 11, 79–86. [Google Scholar] [CrossRef]
- Kleiner-Fisman, G.; Lang, A.E. Insights into brain function through the examination of art: The in£uence of neurodegenerative diseases. Neuroreport 2004, 15, 933–937. [Google Scholar] [CrossRef]
- Alexiou, A.; Psiha, M.; Vlamos, P. Towards an expert system for accurate diagnosis and progress monitoring of Parkinson’s disease. Adv. Exp. Med. Biol. 2015, 822, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, A.; Psiha, M.; Vlamos, P. IFIP AICT 382—An Integrated Ontology-Based Model for the Early Diagnosis of Parkinson’s Disease; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Geser, F.; Jellinger, K.A.; Fellner, L.; Wenning, G.K.; Yilmazer-Hanke, D.; Haybaeck, J. Emergent Creativity in Frontotemporal Dementia; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Salazar, D.R.C.; Lanzarini, L.; Gómez, H.; Thirumuruganandham, S.P.; Salazar, D.X.C. Ontological Model in the Identification of Emotional Aspects in Alzheimer Patients. Healthcare 2023, 11, 1392. [Google Scholar] [CrossRef]
- Oluwafemi, A.; Jimoh, I.A. Expert System for Diagnosis Neurodegenerative Diseases Investigation on Smart Meters and Revenue Generated for a Year Using Eko Electricity Distribution Company of Nigeria as Case Study View Project Expert System for Diagnosis Neurodegenerative Diseases. 2015. Available online: https://www.ijcit.com/archives/volume4/issue4/Paper040413.pdf (accessed on 16 September 2025).
- Vouros, G.A.; Bouchouras, G.; Bitilis, P.; Kotis, K. LLMs for the Engineering of a Parkinson Disease Monitoring and Alerting Ontology. 2024. Available online: https://www.researchgate.net/publication/383431620 (accessed on 16 September 2025).
- Zekri, F.; Bouaziz, R.; Turki, E. A fuzzy-based ontology for Alzheimer’s disease decision support. In Proceedings of the IEEE International Conference on Fuzzy Systems, Istanbul, Turkey, 2–5 August 2015; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Bouchouras, G.; Sofianidis, G.; Kotis, K. Predicting Freezing of Gait in Parkinson’s Disease: A Machine Learning-Based Approach in ON and OFF Medication States. J. Clin. Med. 2025, 14, 2120. [Google Scholar] [CrossRef]
- Bouchouras, G.; Sofianidis, G.; Kotis, K. Temporal Anomaly Detection in Attention-Deficit/Hyperactivity Disorder Using Recurrent Neural Networks. Cureus 2024, 16, e76496. [Google Scholar] [CrossRef]
- Bouchouras, G.; Kotis, K. Integrating Artificial Intelligence, Internet of Things, and Sensor-Based Technologies: A Systematic Review of Methodologies in Autism Spectrum Disorder Detection. Algorithms 2025, 18, 34. [Google Scholar] [CrossRef]
- Zham, P.; Kumar, D.K.; Dabnichki, P.; Arjunan, S.P.; Raghav, S. Distinguishing different stages of Parkinson’s disease using composite index of speed and pen-pressure of sketching a spiral. Front. Neurol. 2017, 8, 268142. [Google Scholar] [CrossRef]
- Isenkul, M.E.; Sakar, B.E.; Kursun, B.E.S.O. Improved Spiral Test Using Digitized Graphics Tablet for Monitoring Parkinson’s Disease. In Proceedings of the 2nd International Conference on e-Health and Telemedicine (ICEHTM-2014), Istanbul, Turkey, 22–24 May 2014. [Google Scholar] [CrossRef]
- Sakar, B.E.; Isenkul, M.E.; Sakar, C.O.; Sertbas, A.; Gurgen, F.; Delil, S.; Apaydin, H.; Kursun, O. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inform. 2013, 17, 828–834. [Google Scholar] [CrossRef]
- Rao, A.; Kim, J.; Kamineni, M.; Pang, M.; Lie, W.; Succi, M.D. Evaluating ChatGPT as an Adjunct for Radiologic Decision-Making. medRxiv 2023. [Google Scholar] [CrossRef]
- Singhal, K.; Azizi, S.; Tu, T.; Mahdavi, S.S.; Wei, J.; Chung, H.W.; Scales, N.; Tanwani, A.; Cole-Lewis, H.; Pfohl, S.; et al. Large language models encode clinical knowledge. Nature 2023, 620, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; De Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.; Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digital Health 2023, 2, e0000198. [Google Scholar] [CrossRef]
- Bobillo, F.; Straccia, U. Reasoning within Fuzzy OWL 2 EL revisited. Fuzzy Sets. Syst. 2018, 351, 1–40. [Google Scholar] [CrossRef]
- Mckinney, W. Data Structures for Statistical Computing in Python. Scipy 2010, 445, 51–56. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems; Guyon, I., Von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf (accessed on 16 September 2025).
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Białek, K.; Potulska-Chromik, A.; Jakubowski, J.; Nojszewska, M.; Kostera-Pruszczyk, A. Analysis of Handwriting for Recognition of Parkinson’s Disease: Current State and New Study. Electronics 2024, 13, 3962. [Google Scholar] [CrossRef]
- Holzinger, A.; Biemann, C.; Kell, D.; Pattichis, C.S.; Kell, D.B. What do we need to build explainable AI systems for the medical domain? arXiv 2017, arXiv:1712.09923. [Google Scholar] [CrossRef]
- Labrak, Y.; Rouvier, M.; Dufour, R. A Zero-shot and Few-shot Study of Instruction-Finetuned Large Language Models Applied to Clinical and Biomedical Tasks. arXiv 2024, arXiv:2307.12114. Available online: http://arxiv.org/abs/2307.12114 (accessed on 16 September 2025).
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.; et al. On the Opportunities and Risks of Foundation Models. arXiv 2022, arXiv:2108.07258. Available online: http://arxiv.org/abs/2108.07258 (accessed on 16 September 2025).
Method | Precision | Recall | F1-Score | Notes |
---|---|---|---|---|
Fuzzy Ontology | 0.72 | 0.75 | 0.74 | High interpretability; directly encodes expert knowledge for reasoning |
Random Forest ML | 0.77 | 0.77 | 0.77 | Strong balance of precision and recall; feature contributions supported by SHAP |
ChatGPT Classifier | 0.77 | 0.77 | 0.77 | Comparable to ML; serves as baseline or triage tool for quick assessments |
Method | Precision | Recall | F1-Score |
---|---|---|---|
ML (Random Forest) | 0.75 | 0.73 | 0.73 |
Fuzzy Ontology | 0.71 | 0.63 | 0.67 |
ChatGPT-Based Classifier | 0.64 | 0.63 | 0.63 |
Metric | Value |
---|---|
Precision | 0.91 |
Recall | 0.91 |
F1-Score | 0.91 |
Method | Precision | Recall | F1-Score |
---|---|---|---|
ML (Random Forest) | 0.67 | 0.73 | 0.70 |
Fuzzy Ontology | 0.91 | 0.91 | 0.91 |
ChatGPT-Based Classifier | 0.50 | 0.50 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koletis, A.; Bitilis, P.; Bouchouras, G.; Kotis, K. A Comparative Analysis of Parkinson’s Disease Diagnosis Approaches Using Drawing-Based Datasets: Utilizing Large Language Models, Machine Learning, and Fuzzy Ontologies. Information 2025, 16, 820. https://doi.org/10.3390/info16090820
Koletis A, Bitilis P, Bouchouras G, Kotis K. A Comparative Analysis of Parkinson’s Disease Diagnosis Approaches Using Drawing-Based Datasets: Utilizing Large Language Models, Machine Learning, and Fuzzy Ontologies. Information. 2025; 16(9):820. https://doi.org/10.3390/info16090820
Chicago/Turabian StyleKoletis, Adam, Pavlos Bitilis, Georgios Bouchouras, and Konstantinos Kotis. 2025. "A Comparative Analysis of Parkinson’s Disease Diagnosis Approaches Using Drawing-Based Datasets: Utilizing Large Language Models, Machine Learning, and Fuzzy Ontologies" Information 16, no. 9: 820. https://doi.org/10.3390/info16090820
APA StyleKoletis, A., Bitilis, P., Bouchouras, G., & Kotis, K. (2025). A Comparative Analysis of Parkinson’s Disease Diagnosis Approaches Using Drawing-Based Datasets: Utilizing Large Language Models, Machine Learning, and Fuzzy Ontologies. Information, 16(9), 820. https://doi.org/10.3390/info16090820