Enhancing Multi-Region Target Search Efficiency Through Integrated Peripheral Vision and Head-Mounted Display Systems
Abstract
1. Introduction
- The HMD-Ambient Display integrated system significantly improved reaction speed for locating targets in rear visual regions while reducing cognitive burden.
- Users significantly preferred multimodal solutions combining HMD with the Ambient Display when performing distributed visual search tasks.
- The Ambient Display component offers a cost-effective solution that complements other visual feedback modalities for enhancing visual search across multiple spatial regions.
2. Related Works
3. Visual Feedback Improves Multi-Area Target Search Efficiency
3.1. Study Design
3.1.1. Visual Feedback Design
3.1.2. Equipment and Software
3.1.3. Independent Variables
- Visual Feedback Type: HMD Display, Ambient Display, and HMD-Ambient Display
- Row Number: 1, 2, 3, 4, 5 (representing different vertical positions in the display grid)
- Column Number: 1, 2, 3, 4, 5 (representing different horizontal positions in the display grid)
- Visual Feedback Type: HMD Display, Ambient Display, and HMD-Ambient Display
- Row Number: 1, 2
- Column Number: 1, 2, 3, 4, 5
3.1.4. Experimental Protocol
3.1.5. Study Participants and Process
3.2. Results
3.2.1. Data in Frontal Visual Area Search
3.2.2. Data in Rear Visual Area Search
3.2.3. User Preference
4. Discussion
4.1. Advantages of Integrated HMD-Ambient Display System
4.2. Real-World Deployment Considerations
4.3. Practical Implications for Visual Assistive System Design
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
HMD | Head-Mounted Display |
HUD | Head-Up Display |
MRTK | Mixed Reality Toolkit |
References
- Capallera, M.; Angelini, L.; Meteier, Q.; Khaled, O.A.; Mugellini, E. Human-Vehicle Interaction to Support Driver’s Situation Awareness in Automated Vehicles: A Systematic Review. IEEE Trans. Intell. Veh. 2023, 8, 2551–2567. [Google Scholar] [CrossRef]
- Matviienko, A.; Mehmedovic, D.; Müller, F.; Mühlhäuser, M. “Baby, You can Ride my Bike”: Exploring Maneuver Indications of Self-Driving Bicycles using a Tandem Simulator. Proc. ACM Hum.-Comput. Interact. 2022, 6, 1–21. [Google Scholar] [CrossRef]
- Tseng, H.Y.; Liang, R.H.; Chan, L.; Chen, B.Y. LEaD: Utilizing Light Movement as Peripheral Visual Guidance for Scooter Navigation. In Proceedings of the MobileHCI ’15: 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, Copenhagen, Denmark, 24–27 August 2015; ACM: New York, NY, USA, 2015; pp. 323–326, ISBN 9781450336529. [Google Scholar] [CrossRef]
- Van Veen, T.; Karjanto, J.; Terken, J. Situation Awareness in Automated Vehicles through Proximal Peripheral Light Signals. In Proceedings of the AutomotiveUI ’17: ACM 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Oldenburg, Germany, 24–27 September 2017; ACM: New York, NY, USA, 2017; pp. 287–292, ISBN 9781450351508. [Google Scholar] [CrossRef]
- Bürger, D.; Schley, M.K.; Loerwald, H.; Pastel, S.; Witte, K. Comparative analysis of visual field characteristics and perceptual processing in peripheral vision between virtual reality and real world. Hum. Behav. Emerg. Technol. 2024, 2024, 2845190. [Google Scholar] [CrossRef]
- Poppinga, B.; Henze, N.; Fortmann, J.; Heuten, W.; Boll, S.C. AmbiGlasses—Information in the Periphery of the Visual Field. In Mensch & Computer 2012: Interaktiv Informiert—Allgegenwärtig und Allumfassend!? Oldenbourg Verlag: München, Germany, 2012. [Google Scholar]
- Chaturvedi, I.; Bijarbooneh, F.H.; Braud, T.; Hui, P. Peripheral vision: A new killer app for smart glasses. In Proceedings of the IUI ’19: 24th International Conference on Intelligent User Interfaces, Marina del Ray, Marina del Ray, CA, USA, 16–20 March 2019; ACM: New York, NY, USA, 2019; pp. 625–636, ISBN 9781450362726. [Google Scholar] [CrossRef]
- Warden, A.C.; Wickens, C.D.; Mifsud, D.; Ourada, S.; Clegg, B.A.; Ortega, F.R. Visual Search in Augmented Reality: Effect of Target Cue Type and Location. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Atlanta, GA, USA, 10–14 October 2022; SAGE Publications Inc.: Los Angeles, CA, USA, 2022; Volume 66, pp. 373–377. [Google Scholar] [CrossRef]
- Sutton, J.; Langlotz, T.; Plopski, A.; Zollmann, S.; Itoh, Y.; Regenbrecht, H. Look over there! Investigating saliency modulation for visual guidance with augmented reality glasses. In Proceedings of the UIST ’22: 35th Annual ACM Symposium on User Interface Software and Technology, Bend, OR, USA, 29 October–2 November 2022; ACM: New York, NY, USA, 2022; pp. 1–15, ISBN 9781450393201. [Google Scholar] [CrossRef]
- Albrecht, M.; Assländer, L.; Reiterer, H.; Streuber, S. MoPeDT: A Modular Head-Mounted Display Toolkit to Conduct Peripheral Vision Research. In Proceedings of the 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Shanghai, China, 25–29 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 691–701, ISBN 9798350348156. [Google Scholar] [CrossRef]
- Meschtscherjakov, A.; Döttlinger, C.; Kaiser, T.; Tscheligi, M. Chase Lights in the Peripheral View: How the Design of Moving Patterns on an LED Strip Influences the Perception of Speed in an Automotive Context. In Proceedings of the CHI ’20: 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; ACM: New York, NY, USA, 2022; pp. 1–9, ISBN 9781450367080. [Google Scholar] [CrossRef]
- Wang, G.; Wang, H.H.; Ren, G. Visual and Haptic Guidance for Enhancing Target Search Performance in Dual-Task Settings. Appl. Sci. 2024, 14, 4650. [Google Scholar] [CrossRef]
- Stein, N.; Watson, T.; Lappe, M.; Westendorf, M.; Durant, S. Eye and head movements in visual search in the extended field of view. Sci. Rep. 2024, 14, 8907. [Google Scholar] [CrossRef] [PubMed]
- Postuma, E.M.J.L.; Cornelissen, F.W.; Pahlevan, M.; Heutink, J.; De Haan, G.A. Reduced Field of View Alters Scanning Behaviour. Virtual Real. 2025, 29, 55. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, J.M. Visual Search: How Do We Find What We Are Looking For? Annu. Rev. Vis. Sci. 2020, 6, 539–562. [Google Scholar] [CrossRef] [PubMed]
- Botch, T.L.; Garcia, B.D.; Choi, Y.B.; Feffer, N.; Robertson, C.E. Active visual search in naturalistic environments reflects individual differences in classic visual search performance. Sci. Rep. 2023, 13, 631. [Google Scholar] [CrossRef] [PubMed]
- David, E.J.; Beitner, J.; Võ, M.L.H. The importance of peripheral vision when searching 3D real-world scenes: A gaze-contingent study in virtual reality. J. Vis. 2021, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Vater, C.; Wolfe, B.; Rosenholtz, R. Peripheral vision in real-world tasks: A systematic review. Psychon. Bull. Rev. 2022, 29, 1531–1557. [Google Scholar] [CrossRef]
- Nuthmann, A.; Canas-Bajo, T. Visual search in naturalistic scenes from foveal to peripheral vision: A comparison between dynamic and static displays. J. Vis. 2022, 22, 10. [Google Scholar] [CrossRef]
- Eckstein, M.P. Visual search: A retrospective. J. Vis. 2011, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Gruenefeld, U.; Stratmann, T.C.; Jung, J.; Lee, H.; Choi, J.; Nanda, A.; Heuten, W. Guiding Smombies: Augmenting Peripheral Vision with Low-Cost Glasses to Shift the Attention of Smartphone Users. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018; ACM: New York, NY, USA, 2018; pp. 127–131, ISBN 9781538675922. [Google Scholar] [CrossRef]
- Rosenholtz, R. Capabilities and Limitations of Peripheral Vision. Annu. Rev. Vis. Sci. 2016, 2, 437–457. [Google Scholar] [CrossRef] [PubMed]
- Wilbrink, M.; Kelsch, J.; Schieben, A. Ambient light based interaction concept for an integrative driver assistance system—A driving simulator study. In Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2015 Annual Conference, Groningen, The Netherlands, 14–16 October 2015. [Google Scholar]
- Healey, C.G.; Enns, J.T. Attention and Visual Memory in Visualization and Computer Graphics. IEEE Trans. Vis. Comput. Graph. 2012, 18, 1170–1188. [Google Scholar] [CrossRef] [PubMed]
- Waldner, M.; Le Muzic, M.; Bernhard, M.; Purgathofer, W.; Viola, I. Attractive Flicker — Guiding Attention in Dynamic Narrative Visualizations. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.; Cockburn, A. Design Framework for Interactive Highlighting Techniques. Found. Trends® Human-Comput. Interact. 2021, 14, 96–271. [Google Scholar] [CrossRef]
- Waldin, N.; Waldner, M.; Viola, I. Flicker Observer Effect: Guiding Attention Through High Frequency Flicker in Images. Comput. Graph. Forum 2017, 36, 467–476. [Google Scholar] [CrossRef]
- Cobus, V.; Meyer, H.; Ananthanarayan, S.; Boll, S.; Heuten, W. Towards reducing alarm fatigue: Peripheral light pattern design for critical care alarms. In Proceedings of the NordiCHI’18: 10th Nordic Conference on Human-Computer Interaction, Oslo, Norway, 29 September–3 October 2018; ACM: New York, NY, USA, 2018; pp. 654–663, ISBN 9781450364379. [Google Scholar] [CrossRef]
- Matviienko, A.; Löcken, A.; El Ali, A.; Heuten, W.; Boll, S. NaviLight: Investigating ambient light displays for turn-by-turn navigation in cars. In Proceedings of the MobileHCI ’16: 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, Florence, Italy, 6–9 September 2016; ACM: New York, NY, USA, 2018; pp. 283–294, ISBN 9781450344081. [Google Scholar] [CrossRef]
- Matviienko, A.; Ananthanarayan, S.; Brewster, S.; Heuten, W.; Boll, S. Comparing unimodal lane keeping cues for child cyclists. In Proceedings of the MUM 2019: 18th International Conference on Mobile and Ubiquitous Multimedia, Pisa, Italy, 27–29 November 2019; ACM: New York, NY, USA, 2019; pp. 1–11, ISBN 9781450376242. [Google Scholar] [CrossRef]
- Niforatos, E.; Fedosov, A.; Elhart, I.; Langheinrich, M. Augmenting skiers’ peripheral perception. In Proceedings of the UbiComp ’17: 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017; ACM: New York, NY, USA, 2017; pp. 114–121, ISBN 9781450351881. [Google Scholar] [CrossRef]
- Kiss, F.; Woźniak, P.W.; Scheerer, F.; Dominiak, J.; Romanowski, A.; Schmidt, A. Clairbuoyance: Improving Directional Perception for Swimmers. In Proceedings of the CHI ’19: 2019 CHI Conference on Human Factors in Computing Systems, Scotland, UK, 4–9 May 2019; ACM: New York, NY, USA, 2019; pp. 1–12, ISBN 9781450359702. [Google Scholar] [CrossRef]
- Firouzian, A.; Kashimoto, Y.; Yamamoto, G.; Keranen, N.; Asghar, Z.; Pulli, P. Twinkle Megane: Evaluation of Near-Eye LED Indicators on Glasses for Simple and Smart Navigation in Daily Life. EAI Endorsed Trans. Pervasive Health Technol. 2017, 3, 153068. [Google Scholar] [CrossRef]
- Woodworth, J.W.; Yoshimura, A.; Lipari, N.G.; Borst, C.W. Design and Evaluation of Visual Cues for Restoring and Guiding Visual Attention in Eye-Tracked VR. In Proceedings of the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Shanghai, China, 25–29 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 442–450, ISBN 9798350348392. [Google Scholar] [CrossRef]
- Schinke, T.; Henze, N.; Boll, S. Visualization of off-screen objects in mobile augmented reality. In Proceedings of the 12th International Conference on Human Computer Interaction with Mobile Devices and Services, Lisbon, Portugal, 7–10 September 2010; pp. 313–316. [Google Scholar] [CrossRef]
- Kumaran, R.; Kim, Y.J.; Milner, A.E.; Bullock, T.; Giesbrecht, B.; Höllerer, T. The Impact of Navigation Aids on Search Performance and Object Recall in Wide-Area Augmented Reality. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–17, ISBN 9781450346559. [Google Scholar] [CrossRef]
- Matviienko, A.; Ananthanarayan, S.; El Ali, A.; Heuten, W.; Boll, S. NaviBike: Comparing Unimodal Navigation Cues for Child Cyclists. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Scotland, UK, 4–9 May 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Gutwin, C.; Cockburn, A.; Coveney, A. Peripheral Popout: The Influence of Visual Angle and Stimulus Intensity on Popout Effects. In Proceedings of the CHI ’17: 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; ACM: New York, NY, USA, 2017; pp. 208–219, ISBN 9781450346559. [Google Scholar] [CrossRef]
- Ronchi, E.; Nilsson, D.; Kojić, S.; Eriksson, J.; Lovreglio, R.; Modig, H.; Walter, A.L. A virtual reality experiment on flashing lights at emergency exit portals for road tunnel evacuation. Fire Technol. 2016, 52, 623–647. [Google Scholar] [CrossRef]
- Lehtinen, V.; Oulasvirta, A.; Salovaara, A.; Nurmi, P. Dynamic tactile guidance for visual search tasks. In Proceedings of the UIST ’12: 25th Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, 7–10 October 2012; pp. 445–452. [Google Scholar] [CrossRef]
- Strasburger, H.; Rentschler, I.; Juttner, M. Peripheral vision and pattern recognition: A review. J. Vis. 2011, 11, 13. [Google Scholar] [CrossRef] [PubMed]
HMD Display | HMD-Ambient Display | Improvement (%) | |
---|---|---|---|
Reaction Time (Rear Visual Area) | 5.29 s | 4.37 s | 17.39% |
User Preference | 5.25 | 7.50 | 42.86% |
Effort | 40.41 | 21.67 | 46.37% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Wang, H.-H.; Huang, Z. Enhancing Multi-Region Target Search Efficiency Through Integrated Peripheral Vision and Head-Mounted Display Systems. Information 2025, 16, 800. https://doi.org/10.3390/info16090800
Wang G, Wang H-H, Huang Z. Enhancing Multi-Region Target Search Efficiency Through Integrated Peripheral Vision and Head-Mounted Display Systems. Information. 2025; 16(9):800. https://doi.org/10.3390/info16090800
Chicago/Turabian StyleWang, Gang, Hung-Hsiang Wang, and Zhihuang Huang. 2025. "Enhancing Multi-Region Target Search Efficiency Through Integrated Peripheral Vision and Head-Mounted Display Systems" Information 16, no. 9: 800. https://doi.org/10.3390/info16090800
APA StyleWang, G., Wang, H.-H., & Huang, Z. (2025). Enhancing Multi-Region Target Search Efficiency Through Integrated Peripheral Vision and Head-Mounted Display Systems. Information, 16(9), 800. https://doi.org/10.3390/info16090800