Figure 1.
Yearly dengue trends in America (2014–2024): total, confirmed cases, and deaths [
3].
Figure 2.
Global dengue confirmed cases from 2010 to March 2025 [
4].
Figure 3.
Methodology of the proposed framework.
Figure 4.
(a) Correlation of the dataset’s attributes. and (b) t-SNE plot of the dataset.
Figure 5.
Intersection of features based on classes 0 and 1.
Figure 6.
Structure of XGBoost algorithm.
Figure 7.
Exploration and exploitation in GJO [
23].
Figure 8.
Red Fox hunting behavior and mathematical model development [
24].
Figure 9.
Vocalization and encircling process of SLO [
25].
Figure 10.
Preparing 10-fold CV sets.
Figure 11.
Presentation of DiCE activity.
Figure 12.
Epoch vs. fitness of the optimizers.
Figure 13.
Distribution of different performance metrics of the models.
Figure 14.
Models’ mean performance (XGB = XGBoost).
Figure 15.
GJO-XGBoost confusion matrices for test fold sets.
Figure 16.
ROC curves for all models.
Figure 17.
PR AUCs obtained for all optimized models at fold 1.
Figure 18.
Mean execution time complexity for the models (XGB = XGBoost).
Figure 19.
ROC curves of all optimized models using the imputed dataset (XGB = XGBoost).
Figure 20.
Calibration curves of all optimized models at fold 1.
Figure 21.
Fitness vs. epoch plot for GJO-XGBoost with internal nested 5-fold CV.
Figure 22.
No-optimizer SHAP analysis.
Figure 23.
Mean SHAP values for GJO-XGBoost, FOX-XGBoost, and SLO-XGBoost (XGB = XGBoost).
Figure 24.
Violin and beeswarm plots of FOX-XGBoost model (XGB = XGBoost).
Figure 25.
SHAP scatter plot for all four selected features in FOX-XGBoost.
Figure 26.
Individual prediction of index 127 for all models.
Figure 27.
Individual prediction of index 322 for all models.
Figure 28.
Individual prediction of index 795 for all models.
Table 1.
Summary of previously used dengue datasets and the performance (Att. = Attributes, XGB = XGBoost).
SL | Dataset Name | Samples | Att. | Model | Accuracy (%) |
---|
01 | Universitas Indonesia Dengue Dataset [7] | 130 | 8 | RF | 57.69 |
02 | Karuna Medical Hospital Kerala Dataset [8] | 100 | 11 | RF | 83.30 |
03 | Delhi Multiple Hospital Dataset [9] | 110 | 16 | PSO-ANN | 87.27 |
04 | Taiwan Dengue Fever Dataset [10] | 805 | 12 | RF | 89.94 |
05 | Discharged Patient Report Dataset [11] | 75 | 9 | Logit Boost | 92.00 |
06 | CBC Dengue Dataset Bangladesh [12] | 320 | 15 | SC | 96.88 |
07 | Vietnam Dengue Clinical Dataset [13] | 2301 | 23 | XGB | 98.60 |
08 | Taiz Dengue Surveillance Dataset [6] | 6694 | 22 | ET | 99.03 |
09 | Dirgahayu Hospital Dengue Dataset [14] | 110 | 21 | SVM | 99.10 |
Table 2.
Description of the PCD dataset (MV. = missing values).
Feature | Unit | Symbol | Datatype | MV. | Role | Min | Max |
---|
Age | Year | | Integer | No | Feature | 3 | 120 |
Sex | Male/Female/Child | | Categorical | No | Feature | – | – |
Hemoglobin | g/dL | | Continuous | No | Feature | 11 | 25 |
WBC Count | ×L | | Continuous | Yes (2.39%) | Feature | 2000 | 10,900 |
Differential Count | % | | Binary | No | Feature | – | – |
RBC Panel | – | | Binary | No | Feature | – | – |
Platelet Count | ×L | | Continuous | Yes (1.69%) | Feature | 10,000 | 500,000 |
PDW | % | | Continuous | Yes (1.89%) | Feature | 1 | 215 |
Final Output | – | – | Binary | Yes (1.40%) | Target | – | – |
Table 3.
Descriptive statistics of features by class (0 and 1).
Feature | Class 0 (300) | Class 1 (631) |
---|
| Min | Max | Ave | Min | Max | Ave |
Age | 3.0 | 120.0 | 47.533 | 3.0 | 99.0 | 40.036 |
Hemoglobin | 11.0 | 25.0 | 13.727 | 11.0 | 16.6 | 13.729 |
WBC Count | 3600.0 | 10,900.0 | 7462.667 | 2000.0 | 3700.0 | 2849.921 |
Platelet Count | 17,800.0 | 500,000.0 | 216,231.667 | 10,000.0 | 190,340.0 | 65,979.769 |
PDW | 1.0 | 65.6 | 30.380 | 9.0 | 215.0 | 19.448 |
Table 4.
Boundary conditions for XGBoost classifier hyperparameters.
Hyperparameter | Name | Type | Range |
---|
Number of Estimators | n_estimators | Integer | 100 to 300 |
Learning Rate | learning_rate | Float | 0.001 to 0.05 |
Max Depth | max_depth | Integer | 3 to 7 |
Minimum Child Weight | min_child_weight | Integer | 1 to 10 |
Feature Range | features | Binary Vector (length = 8) | Binary (0 or 1) |
Table 5.
Fold-wise optimized hyperparameters, selected features, and fitness progression.
Optimizer | Fold | Features | | | | | Fitness@1 | Fitness@100 | Sat. Fitness | Sat. Epoch |
---|
GJO | 1 | | 249 | 0.0455 | 3 | 1 | 1.0 | 1.0 | 1.0 | 1 |
| 2 | | 239 | 0.0455 | 3 | 1 | 1.0 | 1.0 | 1.0 | 1 |
| 3 | | 249 | 0.0455 | 3 | 1 | 1.0 | 1.0 | 1.0 | 1 |
| 4 | | 249 | 0.0455 | 3 | 1 | 1.0 | 1.0 | 1.0 | 1 |
| 5 | | 249 | 0.0455 | 4 | 1 | 1.0 | 1.0 | 1.0 | 1 |
| 6 | | 248 | 0.0455 | 4 | 1 | 1.0 | 1.0 | 1.0 | 1 |
| 7 | | 114 | 0.0455 | 3 | 1 | 1.0 | 1.0 | 1.0 | 1 |
| 8 | | 114 | 0.0455 | 3 | 1 | 1.0 | 1.0 | 1.0 | 1 |
| 9 | | 114 | 0.0453 | 3 | 1 | 1.0 | 1.0 | 1.0 | 1 |
| 10 | | 248 | 0.0455 | 4 | 1 | 1.0 | 1.0 | 1.0 | 1 |
FOX | 1 | | 145 | 0.05 | 7 | 1 | 1.0 | 1.0 | 1.0 | 1 |
| 2 | | 151 | 0.05 | 7 | 2 | 1.0 | 1.0 | 1.0 | 1 |
| 3 | | 151 | 0.05 | 7 | 2 | 1.0 | 1.0 | 1.0 | 1 |
| 4 | | 143 | 0.05 | 7 | 1 | 0.9989 | 1.0 | 1.0 | 19 |
| 5 | | 143 | 0.05 | 7 | 1 | 0.9989 | 1.0 | 1.0 | 19 |
| 6 | | 148 | 0.05 | 7 | 2 | 1.0 | 1.0 | 1.0 | 1 |
| 7 | | 146 | 0.05 | 7 | 8 | 1.0 | 1.0 | 1.0 | 1 |
| 8 | | 146 | 0.05 | 7 | 8 | 1.0 | 1.0 | 1.0 | 1 |
| 9 | | 146 | 0.05 | 7 | 8 | 1.0 | 1.0 | 1.0 | 1 |
| 10 | | 143 | 0.05 | 7 | 1 | 0.9989 | 1.0 | 1.0 | 19 |
SLO | 1 | | 258 | 0.0396 | 6 | 1 | 0.9989 | 1.0 | 1.0 | 4 |
| 2 | | 258 | 0.0396 | 6 | 1 | 0.9989 | 1.0 | 1.0 | 4 |
| 3 | | 258 | 0.0396 | 6 | 1 | 0.9988 | 1.0 | 1.0 | 4 |
| 4 | | 258 | 0.0396 | 6 | 1 | 0.9989 | 1.0 | 1.0 | 4 |
| 5 | | 258 | 0.0396 | 6 | 1 | 0.9989 | 1.0 | 1.0 | 4 |
| 6 | | 258 | 0.0396 | 6 | 1 | 0.9989 | 1.0 | 1.0 | 4 |
| 7 | | 108 | 0.0047 | 3 | 3 | 1.0 | 1.0 | 1.0 | 1 |
| 8 | | 108 | 0.0047 | 3 | 3 | 1.0 | 1.0 | 1.0 | 1 |
| 9 | | 108 | 0.0047 | 3 | 3 | 1.0 | 1.0 | 1.0 | 1 |
| 10 | | 258 | 0.0396 | 6 | 1 | 0.9989 | 1.0 | 1.0 | 4 |
Table 6.
Finalized hyperparameters and features using MV.
Optimizer | | | | | | Number of Features |
---|
GJO | 249 | 0.0455210569158742 | 3 | 1 | | 2 |
FOX | 143 | 0.05 | 7 | 1 | | 4 |
SLO | 258 | 0.0395697655228806 | 6 | 1 | | 3 |
Table 7.
Multiple baseline (with default settings) classifier model’s mean results of 10-fold validation (all features used; Acc. = accuracy, Pre. = precision, and Rec. = recall).
| Training (%) | Testing (%) |
---|
Models | Acc. | F-Score | Pre. | Rec. | Acc. | F-Score | Pre. | Rec. |
XGBoost | 100.00 | 100.00 | 100.00 | 100.00 | 99.65 | 99.59 | 99.74 | 99.45 |
LightGBM | 100.00 | 100.00 | 100.00 | 100.00 | 99.82 | 99.79 | 99.84 | 99.74 |
CatBoost | 100.00 | 100.00 | 100.00 | 100.00 | 99.83 | 99.81 | 99.84 | 99.78 |
Random Forest | 100.00 | 100.00 | 100.00 | 100.00 | 99.83 | 99.81 | 99.77 | 99.84 |
Extra Trees | 100.00 | 100.00 | 100.00 | 100.00 | 99.83 | 99.81 | 99.79 | 99.83 |
Gradient Boosting | 100.00 | 100.00 | 100.00 | 100.00 | 99.83 | 99.81 | 99.84 | 99.78 |
Decision Tree | 100.00 | 100.00 | 100.00 | 100.00 | 99.83 | 99.81 | 99.84 | 99.78 |
KNN | 99.25 | 99.13 | 99.23 | 99.03 | 98.96 | 98.80 | 98.86 | 98.75 |
SVM | 98.53 | 98.32 | 98.13 | 98.54 | 98.17 | 97.93 | 97.61 | 98.31 |
Table 8.
All models’ results using CV.
| Training (%) | Testing (%) |
---|
Fold | Accuracy | F-Score | Precision | Recall | Accuracy | F-Score | Precision | Recall |
1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
2 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
3 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
4 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
5 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
6 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
7 | 100 | 100 | 100 | 100 | 99.64 | 99.72 | 99.45 | 100 |
8 | 100 | 100 | 100 | 100 | 99.64 | 99.74 | 99.48 | 100 |
9 | 100 | 100 | 100 | 100 | 99.64 | 99.75 | 99.50 | 100 |
10 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Table 9.
Standard deviation of model’s test performance.
Model | Accuracy | F-Score | Precision | Recall |
---|
GJO-XGBoost | 0.173135 | 0.127108 | 0.25354 | 0.00 |
FOX-XGBoost | 0.173135 | 0.127108 | 0.25354 | 0.00 |
SLO-XGBoost | 0.173135 | 0.127108 | 0.25354 | 0.00 |
Table 10.
Models’ mean results using fold validation (Feat. = features, Acc. = accuracy, Pre. = precision, and Rec. = recall).
| | Training (%) | Testing (%) |
---|
Model | Feat. | Acc. | F-Score | Pre. | Rec. | Acc. | F-Score | Pre. | Rec. |
GJO-XGBoost | 2 | 100 | 100 | 100 | 100 | 99.89 | 99.92 | 99.84 | 100 |
FOX-XGBoost | 4 | 100 | 100 | 100 | 100 | 99.89 | 99.92 | 99.84 | 100 |
SLO-XGBoost | 3 | 100 | 100 | 100 | 100 | 99.89 | 99.92 | 99.84 | 100 |
Table 11.
Information of index 795 with selected features for frameworks.
Framework | Features | Sex () | Hemoglobin () | WBC Count () | Platelet Count () |
---|
GJO-XGBoost | , | – | – | 3600 | 190,000 |
FOX-XGBoost | , , , | 2 | 14.9 | 3600 | 190,000 |
SLO-XGBoost | , , | – | 14.9 | 3600 | 190,000 |
Table 12.
Fold-wise AUC scores and mean AUC for GJO-XGBoost, FOX-XGBoost, and SLO-XGBoost models.
Model | Folds 1–6 | Fold 7 | Fold 8 | Fold 9 | Fold 10 | Mean AUC |
---|
GJO-XGBoost | 1.00 | 0.994898 | 0.999823 | 0.99375 | 1.0 | 0.998847 |
FOX-XGBoost | 1.00 | 0.994898 | 0.999823 | 0.99375 | 1.0 | 0.998847 |
SLO-XGBoost | 1.00 | 0.994898 | 0.999823 | 0.99375 | 1.0 | 0.998847 |
Table 13.
Fold-wise PR AUCs of different models in percentage.
Model | Folds 1–6 | Fold 7 | Fold 8 | Fold 9 | Fold 10 | Mean PR AUC |
---|
GJO-XGB | 100 | 99.45 | 99.48 | 99.50 | 100 | 99.84 |
FOX-XGB | 100 | 99.45 | 99.48 | 99.50 | 100 | 99.84 |
SLO-XGB | 100 | 99.45 | 99.48 | 99.50 | 100 | 99.84 |
Table 14.
Training, test, and optimization times for each fold (STD = standard deviation).
| GJO-XGBoost | FOX-XGBoost | SLO-XGBoost |
---|
Fold | TrT (ms) | TsT (ms) | OpT (s) | TrT (ms) | TsT (ms) | OpT (s) | TrT (ms) | TsT (ms) | OpT (s) |
1 | 48.39 | 10.80 | 338.53 | 337.38 | 14.72 | 161.37 | 52.45 | 46.02 | 303.33 |
2 | 51.50 | 9.21 | 326.74 | 38.93 | 12.53 | 152.46 | 46.07 | 10.23 | 315.57 |
3 | 51.05 | 9.06 | 324.27 | 33.61 | 9.14 | 153.16 | 51.76 | 9.60 | 310.85 |
4 | 47.82 | 8.81 | 330.94 | 30.88 | 9.49 | 149.95 | 55.59 | 9.25 | 314.97 |
5 | 42.78 | 12.14 | 330.77 | 72.17 | 25.23 | 145.73 | 53.37 | 6.72 | 322.13 |
6 | 40.24 | 11.12 | 329.35 | 118.01 | 52.76 | 169.48 | 47.47 | 8.88 | 312.08 |
7 | 78.44 | 18.09 | 206.90 | 33.18 | 9.32 | 146.87 | 54.18 | 8.77 | 270.95 |
8 | 44.17 | 9.43 | 212.28 | 29.41 | 9.23 | 133.57 | 45.31 | 9.11 | 298.62 |
9 | 46.72 | 10.21 | 212.95 | 28.50 | 10.18 | 136.84 | 42.68 | 12.52 | 273.67 |
10 | 50.18 | 9.92 | 331.49 | 64.79 | 8.72 | 165.02 | 55.71 | 12.35 | 313.30 |
Mean | 50.13 | 10.88 | 294.42 | 78.69 | 16.13 | 151.44 | 50.46 | 13.34 | 303.55 |
STD | 10.60 | 2.74 | 57.90 | 95.23 | 13.81 | 11.55 | 4.68 | 11.61 | 17.70 |
Table 15.
Pair-wise Mann–Whitney U test results for optimization time (seconds).
Comparison | U-Statistic | p-Value | Significant |
---|
FOX vs. GJO | 100.00 | 0.0002 | Yes |
GJO vs. SLO | 70.00 | 0.1405 | No |
SLO vs. FOX | 0.00 | 0.0002 | Yes |
Table 16.
Models’ mean results of fold validation on the imputed dataset (Feat. = features, Acc. = accuracy, Pre. = precision, and Rec. = recall).
| | Training (%) | Testing (%) |
---|
Model | Feat. | Acc. | F-Score | Pre. | Rec. | Acc. | F-Score | Pre. | Rec. |
GJO-XGBoost | 2 | 99.90 | 99.93 | 100.0 | 99.85 | 99.67 | 99.75 | 99.85 | 99.66 |
FOX-GJO | 4 | 99.90 | 99.93 | 100.0 | 99.85 | 99.63 | 99.73 | 99.85 | 99.61 |
SLO-XGBoost | 3 | 99.90 | 99.93 | 100.0 | 99.85 | 99.63 | 99.73 | 99.85 | 99.61 |
Table 17.
Mean test performance comparison of XGBoost classifier with different encoders.
Model | Accuracy | F-Score | Precision | Recall |
---|
Only XGBoost (Label Encoding) | 99.65% | 99.74% | 99.48% | 100% |
Only XGBoost (One-Hot Encoding) | 99.75% | 99.82% | 99.63% | 100% |
Table 18.
Mean test performance comparison of FOX-XGBoost with different encoders.
Model | Accuracy | F-Score | Precision | Recall |
---|
FOX-XGBoost (Label Encoding) | 99.89% | 99.92% | 99.84% | 100% |
FOX-XGBoost (One-Hot-Encoding) | 99.89% | 99.92% | 99.84% | 100% |
Table 19.
Mean Brier Score Loss (BSL) values of all optimized models.
Metric | GJO-XGBoost | FOX-XGBoost | SLO-XGBoost |
---|
Mean BSL | 0.0014 | 0.0014 | 0.0014 |
Table 20.
Finalized features and hyperparameters for GJO-XGBoost using internal nested 5-fold CV.
Features | n_estimators | learning_rate | max_depth | min_child_weight |
---|
Index: 3, 6 | 117 | 0.0378144791468909 | 4 | 1 |
Table 21.
Mean test performance of GJO-XGBoost using internal nested 5-fold CV (Tr = training, Te = test, Acc. = accuracy, F = F-score, Pre = precision, and Rec = recall).
Tr Acc | Tr F | Tr Pre | Tr Rec | Te Acc | Te F | Te Pre | Te Rec |
---|
99.89 | 99.92 | 99.84 | 100 | 99.75 | 99.82 | 99.63 | 100 |
Table 22.
Diverse counterfactual set for index 795 (new outcome: 0).
Framework | CF Number | Sex () | Hemoglobin () | WBC Count () | Platelet Count () |
---|
GJO-XGBoost | 1 | – | – | 9485.8 | 328,247.8 |
| 2 | – | – | 6522.0 | 328,391.2 |
| 3 | – | – | 8253.6 | 94,799.9 |
| 4 | – | – | 8878.2 | 190,000.0 |
| 5 | – | – | 8561.3 | 190,000.0 |
| Mean | – | – | 8339.82 | 226,487.98 |
FOX-XGBoost | 1 | 2 | 15.6 | 7758.2 | 190,000.0 |
| 2 | 2 | 14.9 | 5165.6 | 190,000.0 |
| 3 | 0 | 14.9 | 7245.9 | 190,000.0 |
| 4 | 2 | 14.9 | 8431.5 | 190,000.0 |
| 5 | 2 | 14.9 | 8424.9 | 190,000.0 |
| Mean | – | 15.04 | 7405.22 | 190,000.0 |
SLO-XGBoost | 1 | – | 14.9 | 7836.6 | 190,000.0 |
| 2 | – | 16.0 | 8347.0 | 190,000.0 |
| 3 | – | 14.9 | 5855.3 | 190,000.0 |
| 4 | – | 14.9 | 5537.4 | 190,000.0 |
| 5 | – | 15.0 | 8030.4 | 190,000.0 |
| Mean | – | 15.14 | 7121.34 | 190,000.0 |
Table 23.
Comparison of existing frameworks and the proposed frameworks.
SL | Dataset Name | Model | Accuracy (%) | F-Score (%) | Precision (%) | Recall (%) | Features |
---|
01 | [7] | RF | 57.69 | – | – | – | 7 |
02 | [8] | RF | 83.30 | – | – | – | 10 |
03 | [9] | PSO-ANN | 87.27 | – | – | – | 15 |
04 | [10] | RF | 89.94 | – | – | 94.79 | 60 |
05 | [11] | Logit Boost | 92.00 | 92.00 | 95.00 | 90.00 | 8 |
06 | [12] | SC | 96.88 | 96.46 | 97.73 | 95.45 | 14 |
07 | [13] | XGBoost | 98.60 | 96.00 | 98.00 | 94.00 | 22 |
08 | [6] | ET | 99.03 | 99.04 | 98.92 | 99.17 | 21 |
09 | [14] | SVM | 99.10 | – | 99.10 | 99.10 | 20 |
The Proposed Frameworks |
01 | PCD Dataset | GJO-XGBoost | 99.89 | 99.92 | 99.84 | 100 | 2 |
02 | | FOX-XGBoost | 99.89 | 99.92 | 99.84 | 100 | 4 |
03 | | SLO-XGBoost | 99.89 | 99.92 | 99.84 | 100 | 3 |