A Novel Point-Cloud-Based Alignment Method for Shelling Tool Pose Estimation in Aluminum Electrolysis Workshop
Abstract
1. Introduction
- We design an error compensation mechanism for end pose estimation in aluminum electrolysis workshops, which mitigates the influence of noise masking and improves robustness under harsh industrial conditions;
- We develop an improved ICP algorithm with bi-directional error constraints, which reduces alignment inaccuracies and convergence difficulties, while avoiding local optima during the fine alignment stage;
- We integrate multi-stage point-cloud alignment into a unified framework, enabling reliable and accurate pose estimation in complex industrial scenarios, with potential extension to other application domains such as robotics, augmented reality, and digital twins.
2. Challenges of the Moment
2.1. Characterization of Aluminum Electrolysis Workshop Shelling Mechanism Working Conditions
- Multi-degree-of-freedom motion: the tilting hydraulic cylinder provides a continuous tilting range of –, and the lifting hydraulic cylinder can realize a vertical stroke of 0.5–1.2 m. This composite motion leads to significant nonlinear features in the point-cloud distribution, which increases the alignment difficulty.
- Structural symmetry: the upper and lower connecting rods and the connecting frame are geometrically symmetrical. Although this characteristic is beneficial to the mechanical balance of the mechanism, it is easy to produce ambiguity in the matching of the point-cloud features, which leads to a decrease in the accuracy of the alignment.
2.2. Engineering Adaptability Issues of Current Pose Estimation Methods
3. Methods
3.1. Weighted 3D Hough Voting with Adaptive Threshold Template Matching Based on FPFH Features
3.1.1. Weighted 3D Hough Vote
- Point-to-transform parameter estimation: For a point in the reference point-cloud and a point in the template point-cloud, a transform parameter is obtained by calculating the transformation relationship between the two points. The formula is expressed as follows:
- Weighted vote accumulation: The transformation of each point pair is mapped to the corresponding pose in the 3D Hough space. The vote values are accumulated and multiplied by the weight . The formula is expressed as follows:
3.1.2. Adaptive Threshold Optimization
3.2. RANSAC-IA Coarse Alignment Method Based on FPFH-PCA Feature Fusion
3.3. Fine Registration of Point-Clouds with Improved ICP Algorithm
- In each iteration, the reference point-cloud is transformed to the coordinate system of the target point-cloud according to the current transformation matrix .
- Use KD-Tree to search for the nearest neighbor of each point in the reference point-cloud, and calculate the perpendicular distance from the source point to the surface of the target point-cloud.
- Introduce the normal vector information of the point-cloud surface into the error function, so that the optimization process is no longer limited to the Euclidean distance of a single point pair, but combines the geometric features of the surface to solve for a more compatible matching relationship.
4. Experimentation and Analysis
4.1. Dataset and Experimental Setup
4.2. Results and Analysis of Template Matching Test
4.3. Test Results and Analysis of Improved Alignment Algorithms
4.3.1. Test Results and Analysis of Coarse Alignment Algorithm
4.3.2. Test Results and Analysis of Fine Alignment Algorithm
5. Conclusions
- We propose a novel FPFH feature matching algorithm that integrates weighted 3D Hough voting with adaptive thresholds, significantly enhancing the robustness of the algorithm in extreme industrial environments such as high temperatures, dust, and occlusions.
- We combined FPFH descriptors with PCA geometric constraints to construct a hybrid RANSAC-IA coarse registration framework, improving the applicability of the registration algorithm in complex unstructured industrial scenarios and providing a more reliable initial pose for high-precision pose estimation.
- We designed an improved ICP algorithm based on point-to-plane distance and normal vector weighting, which effectively improved the accuracy and stability of attitude estimation.
- Experimental verification conducted at a real aluminum electrolysis industry site shows that the proposed method performs better than traditional registration techniques in terms of alignment accuracy and robustness, effectively improving pose estimation performance in complex environments and meeting the application requirements of this industrial scenario.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Lin, J.; Liu, C.; Liu, A.; Shi, Z.; Wang, Z.; Jiang, S.; Wang, G.; Liu, F. Research on Aluminum Electrolysis from 1970 to 2023: A Bibliometric Analysis. JOM 2024, 76, 3265–3274. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, W.; Zheng, L.; Chen, Q.; Liu, Y.; Lan, S.; Zhu, M. Enhancing production of hydrogen and simultaneous degradation of ciprofloxacin over Sn doped SrTiO3 piezocatalyst. Sep. Purif. Technol. 2025, 353, 128307. [Google Scholar] [CrossRef]
- Pandey, D.; Hansen, H.H.; Dhakal, R.; Aryal, N.; Rai, S.P.; Sapkota, R.; Nielsen, M.O.; Novoa-Garrido, M.; Khanal, P. Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly. J. Clean. Prod. 2022, 363, 132456. [Google Scholar] [CrossRef]
- Segura, F.; Vivas, F.J.; Andújar, J.M.; Martínez, M. Hydrogen-powered refrigeration system for environmentally friendly transport and delivery in the food supply chain. Appl. Energy 2023, 338, 120945. [Google Scholar] [CrossRef]
- Solheim, A. On the Feasibility of Using Low-Melting Bath to Accommodate Inert Anodes in Aluminium Electrolysis Cells. In Light Metals 2021; Perander, L., Ed.; Springer: Cham, Switzerland, 2021; pp. 511–518. [Google Scholar]
- Cheng, L.; Yang, W.; Ren, Y.; Zhang, L. Effect of Selenium on the Interaction Between Refractory and Steel. Metall. Mater. Trans. B 2019, 50, 1115–1123. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Kim, I.J.; Yun, I. Real-time plasma monitoring technique using incident-angle-dependent optical emission spectroscopy for computer-integrated manufacturing. Robot. Comput.-Integr. Manuf. 2018, 52, 17–23. [Google Scholar] [CrossRef]
- Li, J.; Qiang, K.; Yang, C.; Chen, X.; Li, J.; Zhang, H. Construction and Application of Digital Twin in Aluminum Electrolysis. In Light Metals 2024; Wagstaff, S., Ed.; Springer: Cham, Switzerland, 2024; pp. 453–463. [Google Scholar]
- Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Park, J.; Koltun, V. Fast Global Registration. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 766–782. [Google Scholar]
- Fu, X.; Zhang, Y.; Zhang, W.; Li, Q.; Kong, T. Research on the size of ring forgings based on image detection and point cloud data matching method. Int. J. Adv. Manuf. Technol. 2022, 119, 1725–1735. [Google Scholar] [CrossRef]
- Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155, Range Image Understanding. [Google Scholar] [CrossRef]
- Lynen, S.; Achtelik, M.W.; Weiss, S.; Chli, M.; Siegwart, R. A robust and modular multi-sensor fusion approach applied to MAV navigation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3923–3929. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar] [CrossRef]
- Zhou, Q.-Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847. [Google Scholar] [CrossRef]
- Derpanis, K.G. Overview of the RANSAC Algorithm. Image 2005, 4, 2–3. [Google Scholar]
- Fu, Z.; Zhang, E.; Sun, R.; Zang, J.; Zhang, W. Research on 3D point cloud alignment algorithm based on SHOT features. PLoS ONE 2024, 19, e0296704. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4338–4364. [Google Scholar] [CrossRef]
- Teng, J.-H.; Liu, B.-H. Three-Stage Dead-Time Adjustment Scheme for Conversion Efficiency Enhancement of Phase-Shift Full-Bridge Converters at Light Loads. IEEE Trans. Ind. Electron. 2021, 68, 1210–1219. [Google Scholar] [CrossRef]
- Ma, H.; Wang, G.; Bai, H.; Xia, Z.; Wang, W.; Du, Z. Robotic grasping method with 6D pose estimation and point cloud fusion. Int. J. Adv. Manuf. Technol. 2024, 134, 5603–5613. [Google Scholar] [CrossRef]
- Ding, X.; Qiao, J.; Liu, N.; Yang, Z.; Zhang, R. Robotic grinding based on point cloud data: Developments, applications, challenges, and key technologies. Int. J. Adv. Manuf. Technol. 2024, 131, 3351–3371. [Google Scholar] [CrossRef]
- Ning, D.; Huang, S. L-PCM: Localization and Point Cloud Registration-Based Method for Pose Calibration of Mobile Robots. Information 2024, 15, 269. [Google Scholar] [CrossRef]
- Osipov, A.; Ostanin, M.; Klimchik, A. Comparison of Point Cloud Registration Algorithms for Mixed-Reality Cross-Device Global Localization. Information 2023, 14, 149. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, F.; Zhao, G.; Wang, C. TGNF-Net: Two-Stage Geometric Neighborhood Fusion Network for Category-Level 6D Pose Estimation. Information 2025, 16, 113. [Google Scholar] [CrossRef]
- Du, K.; Xu, H.; Li, H.; Qu, H.; Fu, C.W.; Liu, S. HybridReg: Robust 3D Point Cloud Registration with Hybrid Motions. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 27 February–2 March 2025; Volume 39, pp. 2789–2797. [Google Scholar] [CrossRef]
- Pertigkiozoglou, S.; Chatzipantazis, E.; Daniilidis, K. BiEquiFormer: Bi-Equivariant Representations for Global Point Cloud Registration. arXiv 2024, arXiv:2407.08729. [Google Scholar]
- Wang, Z.; Huang, S.; Butt, J.A.; Cai, Y.; Varga, M.; Wieser, A. Cross-modal feature fusion for robust point cloud registration with ambiguous geometry. ISPRS J. Photogramm. Remote Sens. 2025, 227, 31–47. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; He, Q.; Fang, Z.; Xu, G.; Fu, J. Grasping pose estimation for SCARA robot based on deep learning of point cloud. Int. J. Adv. Manuf. Technol. 2020, 108, 1217–1231. [Google Scholar] [CrossRef]
- Wang, Y.; Solomon, J.M. Deep Closest Point: Learning Representations for Point Cloud Registration. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3522–3531. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Wang, X.; Gao, P.; Li, M. A 3D pickup estimation method for industrial parallel robots based on point cloud simplification and registration. Int. J. Adv. Manuf. Technol. 2024, 133, 5175–5195. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Dong, Z.; Liu, Y.; Li, Y.; Yang, B. A Novel Method for Registration of MLS and Stereo Reconstructed Point Clouds. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5703613. [Google Scholar] [CrossRef]
- Alexiou, E.; Zhou, X.; Viola, I.; Cesar, P. PointPCA: Point cloud objective quality assessment using PCA-based descriptors. EURASIP J. Image Video Process. 2024, 2024, 20. [Google Scholar] [CrossRef]
- Liu, B.; Liu, L.; Tian, F. An Improved SAC-IA Algorithm Based on Voxel Nearest Neighbor Search. Crit. Rev. Biomed. Eng. 2022, 50, 35–46. [Google Scholar] [CrossRef]
- Jing, L.; Wu, B.; Li, X. Point Cloud Registration Method Based on SAC-IA and NDT Fusion. J. Geod. Geodyn. 2021, 41, 378–381. [Google Scholar]
- Wang, H.; Yin, Y.; Jing, Q. Comparative Analysis of 3D LiDAR Scan-Matching Methods for State Estimation of Autonomous Surface Vessel. J. Mar. Sci. Eng. 2023, 11, 840. [Google Scholar] [CrossRef]
r (mm) | Angle (°) | Original Time (s) | Improved Time (s) |
---|---|---|---|
0 | 25 | 249.75 | 183.17 |
50 | 232.28 | 169.50 | |
80 | 246.90 | 183.17 | |
30 | 25 | 50.80 | 37.40 |
50 | 48.26 | 35.06 | |
80 | 48.67 | 35.35 | |
60 | 25 | 1.81 | 1.31 |
50 | 2.12 | 1.55 | |
80 | 2.02 | 1.45 | |
100 | 25 | 0.26 | 0.18 |
50 | 0.21 | 0.15 | |
80 | 0.26 | 0.19 |
(mm) | Angle (°) | Original Time (s) | Improved Time (s) |
---|---|---|---|
0 | 25 | 249.75 | 183.17 |
50 | 232.28 | 169.50 | |
80 | 246.90 | 183.17 | |
5 | 25 | 266.62 | 187.44 |
50 | 264.35 | 190.20 | |
80 | 288.03 | 201.60 | |
10 | 25 | 330.82 | 236.73 |
50 | 308.37 | 221.41 | |
80 | 326.30 | 233.88 | |
20 | 25 | 449.21 | 318.24 |
50 | 426.55 | 305.26 | |
80 | 418.11 | 300.91 |
r (mm) | Angle (°) | Coarse RE (mm)/T (s) | Improved RE (mm)/T (s) | AE (°) |
---|---|---|---|---|
0 | 25 | /117.040 | /96.456 | 0.001 |
50 | /112.104 | /92.512 | 0.011 | |
80 | /111.674 | /99.720 | 0.001 | |
30 | 25 | /10.328 | /8.184 | 0.92 |
50 | /9.440 | /9.320 | 3.34 | |
80 | /10.140 | /8.504 | 4.14 | |
60 | 25 | 12.6/2.000 | /1.716 | 1.56 |
50 | 23.0/1.193 | /1.208 | 1.64 | |
80 | 11.7/1.883 | /1.572 | 5.42 | |
100 | 25 | 39.6/0.655 | /0.612 | 2.26 |
50 | 53.6/0.619 | /0.576 | 2.50 | |
80 | /0.621 | /0.600 | 5.74 |
(mm) | Angle (°) | Coarse RE (mm)/T (s) | Improved RE (mm)/T (s) | AE (°) |
---|---|---|---|---|
5 | 25 | /114.008 | /80.72 | 4.16 |
50 | /120.098 | /83.632 | 0.87 | |
80 | /135.044 | /87.024 | 1.17 | |
10 | 25 | /121.840 | /85.232 | 3.20 |
50 | /125.270 | /88.192 | 1.01 | |
80 | 25.2/129.730 | /90.568 | 4.94 | |
20 | 25 | 38.1/121.276 | /83.720 | 2.16 |
50 | 11.6/138.441 | /87.472 | 0.84 | |
80 | 18.3/142.224 | /89.728 | 4.58 |
Algorithm | Angle (°) | RE (mm) | T (s) | AE (°) |
---|---|---|---|---|
SACIA_ICP | 25 | 139.636 | 0.001 | |
50 | 140.13 | 0.001 | ||
80 | 139.593 | 0.001 | ||
SACIA_NDT | 25 | 179.673 | 1.81 | |
50 | 194.243 | 0.85 | ||
80 | 177.420 | 0.36 | ||
SACIA_LMICP | 25 | 191.168 | 0.020 | |
50 | 185.842 | 0.013 | ||
80 | 184.622 | 0.017 | ||
Our Method | 25 | 120.570 | 0.001 | |
50 | 115.640 | 0.001 | ||
80 | 124.650 | 0.001 |
Algorithm | Angle (°) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RE (mm) | AE (°) | T (s) | RE (mm) | AE (°) | T (s) | RE (mm) | AE (°) | T (s) | ||||
SACIA_ICP | 25 | 5.57 | 12.49 | 7.00 | 2.498 | 11.6 | 0.819 | |||||
50 | 4.95 | 11.796 | 5.72 | 2.391 | 14.0 | 0.774 | ||||||
80 | 3.28 | 12.675 | 7.78 | 2.354 | 10.8 | 0.776 | ||||||
SACIA_NDT | 25 | 6.78 | 18.994 | 5.94 | 3.440 | 12.0 | 1.278 | |||||
50 | 11.4 | 19.076 | 9.86 | 3.432 | 13.9 | 1.152 | ||||||
80 | 7.34 | 17.984 | 5.50 | 3.331 | 14.0 | 1.100 | ||||||
SACIA_LMICP | 25 | 3.36 | 25.280 | 4.92 | 4.420 | 10.8 | 1.197 | |||||
50 | 3.16 | 27.918 | 7.10 | 3.728 | 8.06 | 1.243 | ||||||
80 | 2.70 | 23.481 | 5.30 | 3.129 | 9.74 | 1.457 | ||||||
Our Method | 25 | 0.576 | 10.230 | 2.56 | 2.145 | 4.18 | 0.765 | |||||
50 | 0.710 | 11.540 | 2.64 | 2.278 | 4.66 | 0.721 | ||||||
80 | 0.454 | 10.630 | 2.70 | 2.965 | 5.22 | 0.760 |
Algorithm | Angle (°) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RE (mm) | AE (°) | T (s) | RE (mm) | AE (°) | T (s) | RE (mm) | AE (°) | T (s) | ||||
SACIA_ICP | 25 | 4.28 | 142.51 | 6.40 | 152.3 | 8.32 | 151.595 | |||||
50 | 0.85 | 150.123 | 0.86 | 157.27 | 1.01 | 173.052 | ||||||
80 | 7.78 | 168.806 | 8.70 | 162.163 | 11.2 | 177.78 | ||||||
SACIA_NDT | 25 | 6.30 | 198.08 | 6.88 | 203.808 | 6.34 | 213.117 | |||||
50 | 6.58 | 170.632 | 10.4 | 204.528 | 9.84 | 220.263 | ||||||
80 | 8.08 | 200.544 | 8.08 | 187.053 | 9.38 | 208.12 | ||||||
SACIA_LMICP | 25 | 5.74 | 186.404 | 7.46 | 240.817 | 8.90 | 217.737 | |||||
50 | 7.18 | 217.908 | 8.24 | 199.075 | 7.68 | 225.254 | ||||||
80 | 6.32 | 223.12 | 6.50 | 206.659 | 7.02 | 191.799 | ||||||
Our Method | 25 | 0.049 | 100.95 | 0.096 | 106.54 | 1.24 | 104.65 | |||||
50 | 0.007 | 104.54 | 0.316 | 110.24 | 0.892 | 109.34 | ||||||
80 | 0.009 | 108.78 | 0.195 | 113.21 | 1.07 | 112.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Long, Y.; Long, Y.; Fang, W.; Li, X. A Novel Point-Cloud-Based Alignment Method for Shelling Tool Pose Estimation in Aluminum Electrolysis Workshop. Information 2025, 16, 788. https://doi.org/10.3390/info16090788
Jiang Z, Long Y, Long Y, Fang W, Li X. A Novel Point-Cloud-Based Alignment Method for Shelling Tool Pose Estimation in Aluminum Electrolysis Workshop. Information. 2025; 16(9):788. https://doi.org/10.3390/info16090788
Chicago/Turabian StyleJiang, Zhenggui, Yi Long, Yonghong Long, Weihua Fang, and Xin Li. 2025. "A Novel Point-Cloud-Based Alignment Method for Shelling Tool Pose Estimation in Aluminum Electrolysis Workshop" Information 16, no. 9: 788. https://doi.org/10.3390/info16090788
APA StyleJiang, Z., Long, Y., Long, Y., Fang, W., & Li, X. (2025). A Novel Point-Cloud-Based Alignment Method for Shelling Tool Pose Estimation in Aluminum Electrolysis Workshop. Information, 16(9), 788. https://doi.org/10.3390/info16090788