Artificial Intelligence in Project Success: A Systematic Literature Review
Abstract
1. Introduction
2. Methodology
3. Results
3.1. Identification of Project Success Factors
3.2. AI Sub-Fields and Algorithm Identification
4. Discussion
4.1. Research Question 1: What Are the Key Project Success Dimensions Influenced by AI Throughout the Project Lifecycle?
4.1.1. “Iron Triangle” Time, Cost, and Quality
4.1.2. Risk Management
4.1.3. Decision-Making Support
4.1.4. Stakeholder Management
4.1.5. Project Success in General
4.2. Summary of Findings for Q1
4.3. Research Question 2: What AI Sub-Fields and Algorithms Have Been Employed in Relation to Project Success?
4.3.1. Natural Language Processing (NLP)
4.3.2. Machine Learning (ML)
4.3.3. Knowledge Representation and Reasoning (KRR)
4.3.4. Computational Intelligence (CI)
4.3.5. Hybrid Intelligent System (HIS)
4.4. Summary of Findings for Q2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytic Hierarchy Process |
AI | Artificial Intelligence |
ANNs | Artificial Neural Networks |
CBR | Case-Based Reasoning |
CI | Computational Intelligence |
CNNs | Convolutional Neural Networks |
DAVE | Digital Assistant for Virtual Engineering |
DP | Deep Learning |
DNNs | Deep Neural Networks |
FBWM | Fuzzy Best-Worst Method |
FCMs | Fuzzy Cognitive Maps |
FDA | Flow Direction Algorithm |
GLMs | Generalized Linear Models |
GRU | Gated Recurrent Unit |
GSF | Genetic Random Forest |
GSVMs | Genetic Support Vector Machines |
HIS | Hybrid Intelligent System |
KRR | Knowledge Representation and Reasoning |
LLM | Large Language Model |
LLMs | Large Language Models |
LLNF | Locally Linear Neuro Fuzzy |
LSTM | Long Short Term Memory |
ML | Machine Learning |
NLP | Natural Language Processing |
NPD | New Product Development |
PM | Project Management |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RF | Random Forest |
RM | Risk Management |
SFNE | Swarm Intelligence-Based Functional Link Fuzzy Neural Estimator |
SLR | Systematic Literature Review |
SVM | Support Vector Machine |
TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
References
- Lewis, H.R. Ideas That Created the Future: Classic Papers of Computer Science; MIT Press: Cambridge, MA, USA, 2021. [Google Scholar]
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Mag. 2006, 27, 12. [Google Scholar] [CrossRef]
- Epstein, S.L. Wanted: Collaborative intelligence. Artif. Intell. 2015, 221, 36–45. [Google Scholar] [CrossRef]
- Haenlein, M.; Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Kanbach, D.K.; Heiduk, L.; Blueher, G.; Schreiter, M.; Lahmann, A. The GenAI is out of the bottle: Generative artificial intelligence from a business model innovation perspective. Rev. Manag. Sci. 2024, 18, 1189–1220. [Google Scholar] [CrossRef]
- Obreja, D.M.; Rughiniș, R.; Rosner, D. Mapping the conceptual structure of innovation in artificial intelligence research: A bibliometric analysis and systematic literature review. J. Innov. Knowl. 2024, 9, 100465. [Google Scholar] [CrossRef]
- Jia, N.; Luo, X.; Fang, Z.; Liao, C. When and How Artificial Intelligence Augments Employee Creativity. Acad. Manag. J. 2024, 67, 5–32. [Google Scholar] [CrossRef]
- Yu, Z.; Gong, Y. ChatGPT, AI-generated content, and engineering management. Front. Eng. Manag. 2024, 11, 159–166. [Google Scholar] [CrossRef]
- Escobar, C.A.; Macias, D.; McGovern, M.; Hernandez-de Menendez, M.; Morales-Menendez, R. Quality 4.0—An evolution of Six Sigma DMAIC. Int. J. Lean Six Sigma 2022, 13, 1200–1238. [Google Scholar] [CrossRef]
- Füller, J.; Hutter, K.; Wahl, J.; Bilgram, V.; Tekic, Z. How AI revolutionizes innovation management—Perceptions and implementation preferences of AI-based innovators. Technol. Forecast. Soc. Chang. 2022, 178, 121598. [Google Scholar] [CrossRef]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial intelligence and innovation management: A review, framework, and research agenda. Technol. Forecast. Soc. Chang. 2021, 162, 120392. [Google Scholar] [CrossRef]
- Pannu, A. Artificial Intelligence and its Application in Different Areas. Int. J. Eng. Innov. Technol. 2015, 4, 79–84. [Google Scholar]
- Kerzner, H. The Changing Landscape of Project Management. In Project Management Metrics, KPIs, and Dashboards; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; Chapter 1; pp. 1–42. [Google Scholar] [CrossRef]
- Cooke-Davies, T. The “real” success factors on projects. Int. J. Proj. Manag. 2002, 20, 185–190. [Google Scholar] [CrossRef]
- de Wit, A. Measurement of project success. Int. J. Proj. Manag. 1988, 6, 164–170. [Google Scholar] [CrossRef]
- Radujković, M.; Sjekavica, M. Project Management Success Factors. Procedia Eng. 2017, 196, 607–615. [Google Scholar] [CrossRef]
- Baker, B.N.; Murphy, D.C.; Fisher, D. Factors Affecting Project Success. In Project Management Handbook; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1997; Chapter 35; pp. 902–919. [Google Scholar] [CrossRef]
- Ika, L.A. Project success as a topic in project management journals. Proj. Manag. J. 2009, 40, 6–19. [Google Scholar] [CrossRef]
- Okudan, O.; Budayan, C.; Dikmen, I. A knowledge-based risk management tool for construction projects using case-based reasoning. Expert Syst. Appl. 2021, 173, 114776. [Google Scholar] [CrossRef]
- Zabin, A.; González, V.A.; Zou, Y.; Amor, R. Applications of machine learning to BIM: A systematic literature review. Adv. Eng. Inform. 2022, 51, 101474. [Google Scholar] [CrossRef]
- Sheoraj, Y.; Sungkur, R.K. Using AI to develop a framework to prevent employees from missing project deadlines in software projects - case study of a global human capital management (HCM) software company. Adv. Eng. Softw. 2022, 170, 103143. [Google Scholar] [CrossRef]
- Niu, Y.; Lu, W.; Chen, K.; Huang, G.G.; Anumba, C. Smart Construction Objects. J. Comput. Civ. Eng. 2016, 30, 04015070. [Google Scholar] [CrossRef]
- Bushuyev, S.; Chumachenko, I.; Galkin, A.; Bushuiev, D.; Dotsenko, N. Sustainable Development Projects Implementing in BANI Environment Based on AI Tools. Sustainability 2025, 17, 2607. [Google Scholar] [CrossRef]
- Cockburn, I.M.; Henderson, R.; Stern, S. 4. The Impact of Artificial Intelligence on Innovation: An Exploratory Analysis. In The Economics of Artificial Intelligence: An Agenda; Agrawal, A., Gans, J., Goldfarb, A., Eds.; University of Chicago Press: Chicago, IL, USA, 2019; pp. 115–148. [Google Scholar]
- Agrawal, A.; Gans, J.S.; Goldfarb, A. Exploring the impact of artificial Intelligence: Prediction versus judgment. Inf. Econ. Policy 2019, 47, 1–6. [Google Scholar] [CrossRef]
- Huang, M.H.; Rust, R.T. Artificial Intelligence in Service. J. Serv. Res. 2018, 21, 155–172. [Google Scholar] [CrossRef]
- Bang, S.; Aarvold, M.O.; Hartvig, W.J.; Olsson, N.O.E.; Rauzy, A. Application of machine learning to limited datasets: Prediction of project success. J. Inf. Technol. Constr. 2022, 27, 732–755. [Google Scholar] [CrossRef]
- Fan, C.L. Predicting the Construction Quality of Projects by Using Hybrid Soft Computing Techniques. Comput. Model. Eng. Sci. 2025, 142, 1995–2017. [Google Scholar] [CrossRef]
- Fernandes, D.; Garg, S.; Nikkel, M.; Guven, G. A GPT-Powered Assistant for Real-Time Interaction with Building Information Models. Buildings 2024, 14, 2499. [Google Scholar] [CrossRef]
- Kumar, V.; Pandey, A.; Singh, R. Can Artificial Intelligence be a Critical Success Factor of Construction Projects?: Project practitioners’ perspectives. Technol. Innov. Manag. Rev. 2021, 11, 17–32. [Google Scholar] [CrossRef]
- Benala, T.R.; Kaushik, A.; Dehuri, S. Swarm Intelligence-Based Functional Link Fuzzy Neural Estimator for Software Development Effort Estimation. J. Electron. Electromed. Eng. Med Inform. 2025, 7, 253–269. [Google Scholar] [CrossRef]
- Glahe, P.; Trappe, R. Zauberzeug Learning Loop: A no-code AI Platform. KI-Künstliche Intell. 2023, 37, 195–201. [Google Scholar] [CrossRef]
- Karki, S.; Hadikusumo, B. Machine learning for the identification of competent project managers for construction projects in Nepal. Constr. Innov. 2023, 23, 1–18. [Google Scholar] [CrossRef]
- Borrero-Domínguez, C.; Escobar-Rodríguez, T. Decision support systems in crowdfunding: A fuzzy cognitive maps (FCM) approach. Decis. Support Syst. 2023, 173, 114000. [Google Scholar] [CrossRef]
- Kanbar, L.J.; Wissel, B.; Ni, Y.; Pajor, N.; Glauser, T.; Pestian, J.; Dexheimer, J.W. Implementation of Machine Learning Pipelines for Clinical Practice: Development and Validation Study. JMIR Med. Inform. 2022, 10, e37833. [Google Scholar] [CrossRef]
- Mitrovic, Z.M.; Rakicevic, A.M.; Petrovic, D.C.; Mihic, M.M.; Rakicevic, J.D.; Jelisic, E.T. Systems Thinking in Software Projects-an Artificial Neural Network Approach. IEEE Access 2020, 8, 213619–213635. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Hizam-Hanafiah, M.; Soomro, M.; Abdullah, N. Industry 4.0 Readiness Models: A Systematic Literature Review of Model Dimensions. Information 2020, 11, 364. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Long, L.D.; Anh, T.K. Enhancing accuracy in cost estimation for façade works: Integration of case-based reasoning, random forest, and artificial neural network techniques. Asian J. Civ. Eng. 2024, 25, 1267–1280. [Google Scholar] [CrossRef]
- Rosłon, J. Materials and Technology Selection for Construction Projects Supported with the Use of Artificial Intelligence. Materials 2022, 15, 1282. [Google Scholar] [CrossRef]
- Son, P.V.H.; Tri, B.N. Construction management multiple-objective trade-off problems using the flow direction algorithm (FDA). Asian J. Civ. Eng. 2024, 25, 3415–3429. [Google Scholar] [CrossRef]
- Fadnes, F.S.; Banihabib, R.; Assadi, M. Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster. Energies 2023, 16, 3875. [Google Scholar] [CrossRef]
- Perera, A.D.; Jayamaha, N.P.; Grigg, N.P.; Tunnicliffe, M.; Singh, A. The Application of Machine Learning to Consolidate Critical Success Factors of Lean Six Sigma. IEEE Access 2021, 9, 112411–112424. [Google Scholar] [CrossRef]
- Sabahi, S.; Parast, M.M. The impact of entrepreneurship orientation on project performance: A machine learning approach. Int. J. Prod. Econ. 2020, 226, 107621. [Google Scholar] [CrossRef]
- Zaidi, S.F.M.; Shafiabady, N.; Beilby, J. Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms. Virtual Real. 2023, 27, 3613–3620. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Song, M. Deploying AI for New Product Development Success. Res. Technol. Manag. 2021, 64, 50–57. [Google Scholar] [CrossRef]
- Silveira, G.D.N.; Viana, R.F.; Lima, M.J.; Kuhn, H.C.; Crovato, C.D.P.; Ferreira, S.B.; Pesenti, G.; Storck, E.; Righi, R.D.R. I4.0 Pilot Project on a Semiconductor Industry: Implementation and Lessons Learned. Sensors 2020, 20, 5752. [Google Scholar] [CrossRef]
- Shafiabady, N.; Hadjinicolaou, N.; Din, F.U.; Bhandari, B.; Wu, R.M.X.; Vakilian, J. Using Artificial Intelligence (AI) to predict organizational agility. PLoS ONE 2023, 18, e0283066. [Google Scholar] [CrossRef]
- Fasanghari, M.; Iranmanesh, S.H.; Amalnick, M.S. Predicting the Success of Projects Using Evolutionary Hybrid Fuzzy Neural Network Method in Early Stages. J. Mult.-Valued Log. Soft Comput. 2015, 25, 291–321. [Google Scholar]
- Paredes-Valverde, M.A.; Salas-Zárate, M.D.P.; Colomo-Palacios, R.; Gómez-Berbís, J.M.; Valencia-García, R. An ontology-based approach with which to assign human resources to software projects. Sci. Comput. Program. 2018, 156, 90–103. [Google Scholar] [CrossRef]
- Han, W.; Jiang, H.; Lu, T.; Zhang, X.; Li, W. An Optimized Resolution for Software Project Planning with Improved Max-Min Ant System Algorithm. Int. J. Multimed. Ubiquitous Eng. 2015, 10, 25–38. [Google Scholar] [CrossRef]
- Ivanov, S.; Biolcheva, P. AI Effectiveness and Risk Assessment of Investments in High-Risk Start-Ups. Strateg. Policy Sci. Educ.-Strateg. Na Obraz. I Nauchnata Polit. 2024, 32, 18–28. [Google Scholar] [CrossRef]
- Yoshikuni, A.C.; Dwivedi, R.; Kamal, M.M.; Zhou, D.; Dwivedi, P.; Apolinário, S. A dynamic information technology capability model for fostering innovation in digital transformation. J. Innov. Knowl. 2024, 9, 100589. [Google Scholar] [CrossRef]
- Kaushik, A.; Tayal, D.K.; Yadav, K.; Kaur, A. Integrating firefly algorithm in artificial neural network models for accurate software cost predictions. J. Softw. Evol. Process 2016, 28, 665–688. [Google Scholar] [CrossRef]
- Dwivedi, R.; Dwivedi, P. Role of Stakeholders in Project Success: Theoretical Background and Approach. Int. J. Financ. Insur. Risk Manag. 2021, 11, 38–49. [Google Scholar] [CrossRef]
- Hirschberg, J.; Manning, C.D. Advances in natural language processing. Science 2015, 349, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Portugal, I.; Alencar, P.; Cowan, D. The use of machine learning algorithms in recommender systems: A systematic review. Expert Syst. Appl. 2018, 97, 205–227. [Google Scholar] [CrossRef]
- Eiter, T.; Kern-Isberner, G. A Brief Survey on Forgetting from a Knowledge Representation and Reasoning Perspective. KI-Künstliche Intell. 2019, 33, 9–33. [Google Scholar] [CrossRef]
- Bezdek, J.C. What Is Computational Intelligence? Technical Report CONF-9410335; USDOE Pittsburgh Energy Technology Center (PETC): Pittsburgh, PA, USA; Dept. of Computer Science, Oregon State Univ.: Corvallis, OR, USA; Naval Research Lab.: Washington, DC, USA; Electric Power Research Inst. (EPRI): Palo Alto, CA, USA; Bureau of Mines: Washington, DC, USA, 1994. [Google Scholar]
- Rao, N.M.; Sarma, K.J. An Overview of Computational Intelligence. Int. J. Innov. Sci. Eng. Technol. 2016, 3, 677–682. [Google Scholar]
- Yao, C.J.; Chen, X.H.; Wang, X.P.; Zhou, Y.T. Research on CBR-Based Hybrid Intelligent System’s Application in Equipment Intelligent Maintenance. In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, 10–11 October 2009; Volume 1, pp. 456–459. [Google Scholar] [CrossRef]
- Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK Guide), 7th ed.; Project Management Institute: Newtown Square, PA, USA, 2021. [Google Scholar]
Criterion | Inclusion | Exclusion |
---|---|---|
Literature Type | Peer-reviewed journal articles | Non-peer-reviewed journal articles |
Language | English | Non-English |
Timeline | 2015–2025 | Before 2015 |
Accessibility | Papers can be retrieved | Papers cannot be retrieved |
Dimension | Frequency | Sub-Level Dimensions |
---|---|---|
Time | 21 | N/A |
Cost | 20 | N/A |
Quality | 11 | N/A |
Risk management | 6 | N/A |
Decision-making support | 19 | Critical success factors; technology selection; prediction models; performance prediction; priority setting; resource allocation; trade-off modeling; efficiency indicators; expert integration; project selection; HR assigning; incident prediction |
Stakeholder management | 4 | N/A |
Project success in general | 13 | New product development (NPD) process; Knowledge management; Innovation improvement; Firm and business performance; Process automation; Agility; Employee competency; Holistic views |
AI Sub-Field | Frequency | Algorithms (If Applicable) |
---|---|---|
Natural Language Processing (NLP) | 4 | Generative Pre-Trained Transformer |
Machine Learning (ML) | 33 | Deep Learning; SVM; Random Forest; Genetic-SVM; Genetic-RF; ANN; LSTM; GRU; DNNs; Lasso; Ridge; CNNs; Lazy Learning; LLMs; Decision Tree; GLM |
Knowledge Representation and Reasoning (KRR) | 5 | Case-Based Reasoning; Bayesian Fusion; Symbolic AI; AHP; TOPSIS |
Computational Intelligence (CI) | 4 | Fuzzy Logic; Fuzzy Clustering; Flow Direction Algorithm; Max–Min Ant System |
Hybrid Intelligent Systems (HIS) | 6 | LLNF; Fuzzy Expert System; Swarm Intelligence; SFNE; FBWM; FCM |
Not specific (General AI) | 17 | N/A |
Reference | Year | Project Domain | AI Sub-Field | Project Success Dimension |
---|---|---|---|---|
[27] | 2022 | Construction project | Machine Learning | Decision-making support |
[19] | 2021 | Construction project | Knowledge Representation and Reasoning, Machine Learning | Risk management |
[30] | 2021 | Construction project | AI in general | Time, cost, quality |
[28] | 2025 | Construction project | Machine Learning, Computational Intelligence | Quality and decision-making support |
[40] | 2024 | Construction project | Knowledge Representation and Reasoning, Machine Learning | Cost |
[29] | 2024 | Construction project | Natural Language Processing | Time and decision-making support |
[41] | 2022 | Construction project | Machine Learning | Cost and decision-making support |
[42] | 2024 | Construction project | Computational Intelligence | Decision-making support |
[34] | 2023 | Crowdfunding project | Hybrid Intelligent System | Stakeholders management |
[43] | 2023 | Energy project | Machine Learning | Time, cost and decision-making support |
[44] | 2021 | Not specific | Natural Language Processing, Machine Learning | Time, Project success in general |
[45] | 2020 | Not specific | Machine Learning | Decision-making supporting |
[46] | 2023 | Healthcare project | Machine Learning | Stakeholders management |
[35] | 2022 | Healthcare project | Natural Language Processing, Machine Learning | Time and cost |
[47] | 2021 | High-tech project | AI in general | Project success in general |
[9] | 2022 | Manufacturing project | Machine Learning | Quality |
[48] | 2020 | Manufacturing project | Machine Learning | Time, cost, quality |
[49] | 2023 | Organizational behavior and management project | Machine Learning | Project success in general |
[50] | 2015 | Software project | Hybrid Intelligent System | Time and cost |
[51] | 2018 | Software project | Knowledge Representation and Reasoning, Machine Learning | Decision-making supporting |
[52] | 2015 | Software project | Computational Intelligence | Time and cost |
[36] | 2020 | Software project | Machine Learning | Decision-making support |
[31] | 2025 | Software project | Hybrid Intelligent System | Cost |
[53] | 2024 | Space project | Machine Learning | Risk and cost |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Ayob, A.H. Artificial Intelligence in Project Success: A Systematic Literature Review. Information 2025, 16, 682. https://doi.org/10.3390/info16080682
Su X, Ayob AH. Artificial Intelligence in Project Success: A Systematic Literature Review. Information. 2025; 16(8):682. https://doi.org/10.3390/info16080682
Chicago/Turabian StyleSu, Xiaoyi, and Abu Hanifah Ayob. 2025. "Artificial Intelligence in Project Success: A Systematic Literature Review" Information 16, no. 8: 682. https://doi.org/10.3390/info16080682
APA StyleSu, X., & Ayob, A. H. (2025). Artificial Intelligence in Project Success: A Systematic Literature Review. Information, 16(8), 682. https://doi.org/10.3390/info16080682