Performance Analysis of Reconfigurable Intelligent Surface-Assisted Millimeter Wave Massive MIMO System Under 3GPP 5G Channels
Abstract
:1. Introduction
- This study thoroughly analyzes ABER and sum rate performance in RIS-assisted mmWave M-MIMO systems utilizing standardized 5G channel models defined by 3GPP. It serves as a practical benchmark for performance evaluation.
- A comprehensive comparison between indoor (InH–Office) and outdoor (UMi–Street Canyon) settings at frequencies of 28 GHz and 73 GHz, demonstrating that the 28 GHz band yields better ABER performance in indoor environments.
- Furthermore, this research evaluates continuous phase RIS against discrete phase configurations (1-bit and 2-bit), emphasizing the performance trade-offs and quantization effects crucial for real-world implementations.
- This study also highlights critical aspects overlooked in previous research, such as performance in multi-user scenarios and the effects of increasing RIS elements. The findings reveal that a higher RIS array size can significantly improve ABER performance.
2. Related Works
3. System Model
4. Channel Modeling
4.1. Indoor Physical Channel Model
4.1.1. BS-RIS Channel
4.1.2. RIS-UE Channel
4.2. Outdoor Physical Channel Model
5. Results and Validations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
M-MIMO | Massive multiple Input and Multiple Output |
RIS | Reconfigurable Intelligent Surfaces |
SE | Spectral Efficiency |
EE | Energy Efficiency |
InH | Indoor Hotspot |
UMi | Urban Microcellular |
5G | Fifth-Generation |
6G | Sixth-Generation |
ABER | Average Bit Error Rate |
mmWave | Millimeter Wave |
UE | User Equipment |
BS | Base Station |
LoS | Line-of-Sight |
NLoS | Non Line-of-Sight |
SNR | Signal-to-Noise Ratio |
B5G | Beyond 5G |
References
- Bhide, P.; Shetty, D.; Mikkili, S. Review on 6G communication and its architecture, technologies included, challenges, security challenges and requirements, applications, with respect to AI domain. IET Quant. Commun. 2024. [Google Scholar] [CrossRef]
- Jiang, H.; Xiong, B.; Zhang, H.; Basar, E. Hybrid Far-and Near-field Modeling for Reconfigurable Intelligent Surface Assisted V2V Channels: A Sub-Array Partition Based Approach. IEEE Trans. Wirel. Commun. 2023, 22, 8290–8303. [Google Scholar] [CrossRef]
- Cardoso, L.F.d.S.; Kimura, B.Y.L.; Zorzal, E.R. Towards augmented and mixed reality on future mobile networks. Multimed. Tools Appl. 2024, 83, 9067–9102. [Google Scholar] [CrossRef]
- Dipinkrishnan, R.; Kumaravelu, V.B. Outage analysis and power optimization in uplink and downlink NOMA systems with Rician fading. Results Eng. 2025, 25, 104021. [Google Scholar]
- Jiang, H.; Mukherjee, M.; Zhou, J.; Lloret, J. Channel modeling and characteristics for 6G wireless communications. IEEE Netw. 2020, 35, 296–303. [Google Scholar] [CrossRef]
- Matthaiou, M.; Yurduseven, O.; Ngo, H.Q.; Morales-Jimenez, D.; Cotton, S.L.; Fusco, V.F. The road to 6G: Ten physical layer challenges for communications engineers. IEEE Commun. Mag. 2021, 59, 64–69. [Google Scholar] [CrossRef]
- Umer, A.; Müürsepp, I.; Alam, M.M.; Wymeersch, H. Reconfigurable Intelligent Surfaces in 6G Radio Localization: A Survey of Recent Developments, Opportunities, and Challenges. IEEE Commun. Surv. Tutor. 2025. [Google Scholar] [CrossRef]
- Marzetta, T.L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Montlouis, W.; Imoize, A.L. Fundamentals of Wireless Communications: Massive MIMO Essentials for 6G and Beyond. In Massive MIMO for Future Wireless Communication Systems: Technology and Applications; IEEE Press: Piscataway, NJ, USA, 2025; pp. 1–21. [Google Scholar]
- De Figueiredo, F.A.; Cardoso, F.A.; Moerman, I.; Fraidenraich, G. On the application of massive MIMO systems to machine type communications. IEEE Access 2018, 7, 2589–2611. [Google Scholar] [CrossRef]
- Chataut, R.; Akl, R. Massive MIMO systems for 5G and beyond networks—Overview, recent trends, challenges, and future research direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef]
- Busari, S.A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Commun. Surv. Tutor. 2017, 20, 836–869. [Google Scholar] [CrossRef]
- Velmurugan, P.G.S.; Thiruvengadam, S.J.; Kumaravelu, V.B.; Rajendran, S.; Parameswaran, R.; Imoize, A.L. Performance Analysis of Full Duplex Bidirectional Machine Type Communication System Using IRS with Discrete Phase Shifter. Appl. Sci. 2023, 13, 7128. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Hassouna, S.; Jamshed, M.A.; Rains, J.; Kazim, J.u.R.; Rehman, M.U.; Abualhayja, M.; Mohjazi, L.; Cui, T.J.; Imran, M.A.; Abbasi, Q.H. A survey on reconfigurable intelligent surfaces: Wireless communication perspective. IET Commun. 2023, 17, 497–537. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, Z.; Jiang, H.; Zhang, J.; Wu, L.; Dang, J. A 3D non-stationary MIMO channel model for reconfigurable intelligent surface auxiliary UAV-to-ground mmWave communications. IEEE Trans. Wirel. Commun. 2022, 21, 5658–5672. [Google Scholar] [CrossRef]
- Guan, K.; Ai, B.; Peng, B.; He, D.; Li, G.; Yang, J.; Zhong, Z.; Kürner, T. Towards realistic high-speed train channels at 5G millimeter-wave band—Part I: Paradigm, significance analysis, and scenario reconstruction. IEEE Trans. Veh. Technol. 2018, 67, 9112–9128. [Google Scholar] [CrossRef]
- He, J.; Wymeersch, H.; Di Renzo, M.; Juntti, M. Learning to estimate RIS-aided mmWave channels. IEEE Wirel. Commun. Lett. 2022, 11, 841–845. [Google Scholar] [CrossRef]
- He, J.; Wymeersch, H.; Sanguanpuak, T.; Silvén, O.; Juntti, M. Adaptive beamforming design for mmWave RIS-aided joint localization and communication. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Republic of Korea, 6–9 April 2020; pp. 1–6. [Google Scholar]
- Yang, X.; Wen, C.K.; Jin, S. MIMO detection for reconfigurable intelligent surface-assisted millimeter wave systems. IEEE J. Sel. Areas Commun. 2020, 38, 1777–1792. [Google Scholar] [CrossRef]
- Li, R.; Sun, S.; Tao, M. Ergodic achievable rate maximization of RIS-assisted millimeter-wave MIMO-OFDM communication systems. IEEE Trans. Wirel. Commun. 2022, 22, 2171–2184. [Google Scholar] [CrossRef]
- Jadhav, H.K.; Kumaravelu, V.B. Blind RIS Aided Ordered NOMA: Design, Probability of Outage Analysis and Transmit Power Optimization. Symmetry 2022, 14, 2266. [Google Scholar] [CrossRef]
- Kumaravelu, V.B.; Imoize, A.L.; Soria, F.R.C.; Velmurugan, P.G.S.; Thiruvengadam, S.J.; Murugadass, A.; Gudla, V.V. Outage Probability Analysis and Transmit Power Optimization for Blind-Reconfigurable Intelligent Surface-Assisted Non-Orthogonal Multiple Access Uplink. Sustainability 2022, 14, 13188. [Google Scholar] [CrossRef]
- Magbool, A.; Kumar, V.; Wu, Q.; Di Renzo, M.; Flanagan, M.F. A survey on integrated sensing and communication with intelligent metasurfaces: Trends, challenges, and opportunities. arXiv 2024, arXiv:2401.15562. [Google Scholar]
- Basar, E.; Yildirim, I.; Kilinc, F. Indoor and outdoor physical channel modeling and efficient positioning for reconfigurable intelligent surfaces in mmWave bands. IEEE Trans. Commun. 2021, 69, 8600–8611. [Google Scholar] [CrossRef]
- Basar, E.; Yildirim, I. SimRIS channel simulator for reconfigurable intelligent surface-empowered communication systems. In Proceedings of the 2020 IEEE Latin-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic, 18–20 November 2020; pp. 1–6. [Google Scholar]
- Vardhan Gudla, V.; Babu Kumaravelu, V.; Anjana, B.; Selvaprabhu, P.; Baskar, N.; Sheeba John Kennedy, H.; Nath Sur, S.; Montlouis, W.; Lucky Imoize, A.; Murugadass, A. ABER Performance Evaluation of RIS-Aided Millimeter Wave Massive MIMO System Under 3GPP 5G Channels. In Massive MIMO for Future Wireless Communication Systems: Technology and Applications; IEEE Press: Piscataway, NJ, USA, 2025; pp. 347–369. [Google Scholar]
- Basar, E.; Yildirim, I. Reconfigurable intelligent surfaces for future wireless networks: A channel modeling perspective. IEEE Wirel. Commun. 2021, 28, 108–114. [Google Scholar] [CrossRef]
- Vieira, J.; Malkowsky, S.; Nieman, K.; Miers, Z.; Kundargi, N.; Liu, L.; Wong, I.; Öwall, V.; Edfors, O.; Tufvesson, F. A flexible 100-antenna testbed for massive MIMO. In Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; pp. 287–293. [Google Scholar]
- Harris, P.; Hasan, W.B.; Malkowsky, S.; Vieira, J.; Zhang, S.; Beach, M.; Liu, L.; Mellios, E.; Nix, A.; Armour, S.; et al. Serving 22 users in real-time with a 128-antenna massive MIMO testbed. In Proceedings of the 2016 IEEE International Workshop on Signal Processing Systems (SiPS), Dallas, TX, USA, 26–28 October 2016; pp. 266–272. [Google Scholar]
- Saxena, V.; Fodor, G.; Karipidis, E. Mitigating pilot contamination by pilot reuse and power control schemes for massive MIMO systems. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–6. [Google Scholar]
- Elijah, O.; Leow, C.Y.; Rahman, T.A.; Nunoo, S.; Iliya, S.Z. A comprehensive survey of pilot contamination in massive MIMO—5G system. IEEE Commun. Surv. Tutor. 2015, 18, 905–923. [Google Scholar] [CrossRef]
- Mohammadghasemi, H.; Sabahi, M.F.; Forouzan, A.R. Pilot-decontamination in massive MIMO systems using interference alignment. IEEE Commun. Lett. 2019, 24, 672–675. [Google Scholar] [CrossRef]
- Gustavsson, U.; Sanchéz-Perez, C.; Eriksson, T.; Athley, F.; Durisi, G.; Landin, P.; Hausmair, K.; Fager, C.; Svensson, L. On the impact of hardware impairments on massive MIMO. In Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; pp. 294–300. [Google Scholar]
- Huang, Y.D.; Liang, P.P.; Zhang, Q.; Liang, Y.C. A Machine Learning Approach to MIMO Communications. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Sabharwal, A. Analysis of scalable channel estimation in FDD massive MIMO. EURASIP J. Wirel. Commun. Netw. 2023, 2023, 29. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Gao, Z.; Xie, T.; Wang, Z. Precoding for mmWave massive MIMO. In mmWave Massive MIMO; Elsevier: Amsterdam, The Netherlands, 2017; pp. 79–111. [Google Scholar]
- Akdeniz, M.R.; Liu, Y.; Samimi, M.K.; Sun, S.; Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 2014, 32, 1164–1179. [Google Scholar] [CrossRef]
- Jaeckel, S.; Raschkowski, L.; Börner, K.; Thiele, L. QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials. IEEE Trans. Antennas Propag. 2014, 62, 3242–3256. [Google Scholar] [CrossRef]
- Tercero, M.; von Wrycza, P.; Amah, A.; Widmer, J.; Fresia, M.; Frascolla, V.; Lorca, J.; Svensson, T.; Hamon, M.H.; Destouet Roblot, S.; et al. 5G systems: The mmMAGIC project perspective on use cases and challenges between 6–100 GHz. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; pp. 1–6. [Google Scholar] [CrossRef]
- He, D.; Guan, K.; Yan, D.; Yi, H.; Zhang, Z.; Wang, X.; Zhong, Z.; Zorba, N. Physics and AI-based Digital Twin of Multi-spectrum Propagation Characteristics for Communication and Sensing in 6G and Beyond. IEEE J. Sel. Areas Commun. 2023, 41, 3461–3473. [Google Scholar] [CrossRef]
- Guan, K.; Ai, B.; Peng, B.; He, D.; Li, G.; Yang, J.; Zhong, Z.; Kürner, T. Towards realistic high-speed train channels at 5G millimeter-wave band—Part II: Case study for paradigm implementation. IEEE Trans. Veh. Technol. 2018, 67, 9129–9144. [Google Scholar] [CrossRef]
- Kebede, T.; Wondie, Y.; Steinbrunn, J.; Kassa, H.B.; Kornegay, K.T. Precoding and beamforming techniques in mmwave-massive mimo: Performance assessment. IEEE Access 2022, 10, 16365–16387. [Google Scholar] [CrossRef]
- Nouri, M.; Behroozi, H.; Bastami, H.; Moradikia, M.; Jafarieh, A.; Abdelhadi, A.; Han, Z. Hybrid precoding based on active learning for mmWave massive MIMO communication systems. IEEE Trans. Commun. 2023, 71, 3043–3058. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Kumaravelu, V.B.; Imoize, A.L.; Soria, F.R.C.; Velmurugan, P.G.S.; Thiruvengadam, S.J.; Do, D.T.; Murugadass, A. RIS-Assisted Fixed NOMA: Outage Probability Analysis and Transmit Power Optimization. Future Internet 2023, 15, 249. [Google Scholar] [CrossRef]
- Yildirim, I.; Uyrus, A.; Basar, E. Modeling and analysis of reconfigurable intelligent surfaces for indoor and outdoor applications in future wireless networks. IEEE Trans. Commun. 2020, 69, 1290–1301. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, Z.; Jiang, H. Reconfigurable Intelligent Surface for mmWave Mobile Communications: What If LoS Path Exists? IEEE Wirel. Commun. Lett. 2022, 12, 247–251. [Google Scholar] [CrossRef]
- Li, G.H.; Yue, D.W.; Jin, S.N. Spatially Correlated Rayleigh Fading Characteristics of RIS-aided mmWave MIMO Communications. IEEE Commun. Lett. 2023, 27, 2222–2226. [Google Scholar] [CrossRef]
- Kundu, N.K.; McKay, M.R. RIS-assisted MISO communication: Optimal beamformers and performance analysis. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Tang, W.; Dai, J.Y.; Chen, M.Z.; Wong, K.K.; Li, X.; Zhao, X.; Jin, S.; Cheng, Q.; Cui, T.J. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation. IEEE J. Sel. Areas Commun. 2020, 38, 2683–2699. [Google Scholar] [CrossRef]
- Yildirim, I.; Koc, A.; Basar, E.; Le-Ngoc, T. RIS-Aided Angular-Based Hybrid Beamforming Design in mmWave Massive MIMO Systems. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 5267–5272. [Google Scholar]
- Abdallah, A.; Celik, A.; Mansour, M.M.; Eltawil, A.M. RIS-aided mmWave MIMO channel estimation using deep learning and compressive sensing. IEEE Trans. Wirel. Commun. 2023, 22, 3503–3521. [Google Scholar] [CrossRef]
- Yang, L.; Shen, S.; Ma, S.; Xu, G.; Li, S. Orientation Optimization with Low-Bit Discrete Phase Shifts for RIS-Aided Communication. IEEE Wirel. Commun. Lett. 2023, 12, 1983–1987. [Google Scholar] [CrossRef]
- Anjana, B.; Jadhav, H.; Kumaravelu, V.B.; Soria, F.R.C.; Sayeed, M.S.; Murugadass, A. Smart Reconfigurable Intelligent Surface with Discrete Phase Shifter for Next Generation Networks. In Proceedings of the 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 24–26 March 2022; pp. 178–182. [Google Scholar]
- Thirumavalavan, V.C.; Ruppa Hariharan, A.B.; Thiruvengadam, S.J. BER analysis of tightly packed planar RIS system using the level of spatial correlation and discrete phase shifter. Trans. Emerg. Telecommun. Technol. 2022, 33, e4596. [Google Scholar] [CrossRef]
- ETSI. Study on Channel Model for Frequencies from 0.5 to 100 GHz (Release 15); Technical Report, 3GPP TR 38.901; ETSI: Sophia Antipolis Cedex, France, 2018. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Nayeri, P.; Yang, F.; Elsherbeni, A.Z. Reflectarray Antennas: Theory, Designs, and Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 2018; Available online: https://www.wiley.com/en-us/Reflectarray+Antennas%3A+Theory%2C+Designs%2C+and+Applications-p-9781118846766 (accessed on 10 May 2025).
- Hemadeh, I.A.; Satyanarayana, K.; El-Hajjar, M.; Hanzo, L. Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Commun. Surv. Tutor. 2017, 20, 870–913. [Google Scholar] [CrossRef]
- Docomo, N. 5G Channel Model for Bands up to 100 GHz; Technical Report; 2016. Available online: http://www.5gworkshops.com/5GCMSIG_White%20Paper_r2dot3.pdf (accessed on 10 May 2025).
Components/Works | [25] | [26] | [27] | [28] | Proposed |
---|---|---|---|---|---|
mmWave channel modeling framework | ✓ | ✓ | ✓ | ✓ | ✓ |
3GPP-based RIS simulation | ✓ | ✓ | ✓ | ✓ | ✓ |
Discrete vs. continuous phase RIS analysis | ✓ | ✗ | ✗ | ✗ | ✓ |
Quantified ABER impact for indoor/outdoor scenarios (28/73 GHz) | ✗ | ✗ | ✓ | ✗ | ✓ |
Analysis on impact of increasing N and | ✗ | ✗ | ✓ | ✓ | ✓ |
Analysis on impact of size of RIS array | ✓ | ✗ | ✗ | ✓ | ✓ |
Multi-user scenarios | ✗ | ✗ | ✗ | ✗ | ✓ |
Sum rate analysis | ✓ | ✓ | ✗ | ✓ | ✓ |
Parameters | Values |
---|---|
Carrier frequencies (GHz) | 28 and 73 |
MIMO configurations | 1 × 4, 1 × 16, 1 × 64 |
Size of RIS array | 64, 256, 1024 |
Number of channel realizations | 105 |
Modulation | BPSK |
Target ABER | 10−4 |
InH—Indoor Office | Umi—Street Canyon | |||
---|---|---|---|---|
28 GHz | 73 GHz | 28 GHz | 73 GHz | |
64 | 78 | 88 | 83 | 88 |
256 | 74 | 84 | 75 | 82 |
1024 | 71 | 78 | 66 | 72 |
InH-Indoor Office | Umi- Street Canyon | |
---|---|---|
28 GHz | 28 GHz | |
4 | 73 | 75 |
16 | 67 | 68 |
64 | 63 | 65 |
Schemes | InH Office | UMi Streen Canyon |
---|---|---|
Continuous phase shift RIS | ∼15.53 | ∼11.37 |
1-bit discrete phase shift RIS | ∼1.8 | ∼0.537 |
2-bit discrete phase shift RIS | ∼3.78 | ∼2.78 |
Difference (in bps/Hz) between continuous and 1-bit discrete phase shift RIS | ∼13.73 | ∼10.84 |
Difference (in bps/Hz) between continuous and 2-bit discrete phase shift RIS | ∼11.75 | ∼8.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudla, V.V.; Kumaravelu, V.B.; Imoize, A.L.; Castillo Soria, F.R.; Sujatha, A.B.; John Kennedy, H.S.; Jadhav, H.K.; Murugadass, A.; Sur, S.N. Performance Analysis of Reconfigurable Intelligent Surface-Assisted Millimeter Wave Massive MIMO System Under 3GPP 5G Channels. Information 2025, 16, 396. https://doi.org/10.3390/info16050396
Gudla VV, Kumaravelu VB, Imoize AL, Castillo Soria FR, Sujatha AB, John Kennedy HS, Jadhav HK, Murugadass A, Sur SN. Performance Analysis of Reconfigurable Intelligent Surface-Assisted Millimeter Wave Massive MIMO System Under 3GPP 5G Channels. Information. 2025; 16(5):396. https://doi.org/10.3390/info16050396
Chicago/Turabian StyleGudla, Vishnu Vardhan, Vinoth Babu Kumaravelu, Agbotiname Lucky Imoize, Francisco R. Castillo Soria, Anjana Babu Sujatha, Helen Sheeba John Kennedy, Hindavi Kishor Jadhav, Arthi Murugadass, and Samarendra Nath Sur. 2025. "Performance Analysis of Reconfigurable Intelligent Surface-Assisted Millimeter Wave Massive MIMO System Under 3GPP 5G Channels" Information 16, no. 5: 396. https://doi.org/10.3390/info16050396
APA StyleGudla, V. V., Kumaravelu, V. B., Imoize, A. L., Castillo Soria, F. R., Sujatha, A. B., John Kennedy, H. S., Jadhav, H. K., Murugadass, A., & Sur, S. N. (2025). Performance Analysis of Reconfigurable Intelligent Surface-Assisted Millimeter Wave Massive MIMO System Under 3GPP 5G Channels. Information, 16(5), 396. https://doi.org/10.3390/info16050396