Decentralized Trace-Resistant Self-Sovereign Service Provisioning for Next-Generation Federated Wireless Networks
Abstract
:1. Introduction
- Introducing the SSFXG framework, a decentralized wireless communication model incorporating SSI principles for autonomous user identity management.
- Proposing a secure and anonymous communication system within SSFXG, including untraceable voice call services enabled by cascaded VPN-like tunnels.
- Developing a distributed storage capsule mechanism to securely manage user identity credentials, ensuring scalable and anonymous verification processes.
2. Related Work
3. SSFXG: System Overview and Contributions
4. Key Design Requirements and System Components
4.1. Layer 1: NW Broker
4.2. Layer 2: NW Subscribers
4.3. Layer 3: NW Providers or MNOs
4.4. Layer 4: NW Resources
4.5. Layer 5: Storage Capsules (SCs)
4.6. Layer 6: Consortium Blockchain
5. SSFXG Architecture and Basic Interactions
5.1. NW Subscription Identity Issuance
5.1.1. NW Subscriber Request to Join the Federated Wireless Communication Network
5.1.2. NW Broker Generating the NW Identity Credentials for the New NW Subscribers
5.1.3. The Creation and Management of an NW-Subscriber-Governed SC
5.2. NW Service Provisioning
5.2.1. NW Subscriber Requesting a Wireless Communication Service
5.2.2. NW Subscriber Identity Verification
5.2.3. Attach NW Subscriber to the NW After Being Verified
5.3. Bidding-Based Service Provisioning
5.4. Anonymous Untraceable Voice Call Services
6. Quantitative Evaluation
6.1. Scalability Evaluation
6.2. Cost of Operation
7. Qualitative Evaluation and Open Discussion
7.1. NW Interoperability and Identity Portability
7.2. Privacy Preservation and Identity Protection
7.3. Cost of NW Operation
7.4. SSFXG Challenges and Open Discussion
7.4.1. Threat Model and Security Analysis
7.4.2. SSFXG and Quantum Computing Attacks
7.4.3. Blockchain Scalability and Energy Consumption
7.4.4. Integration with Existing Infrastructure
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Montojo, J.; Lee, J.; Shafi, M.; Kim, Y. The standardization of 5G-Advanced in 3GPP. IEEE Commun. Mag. 2022, 60, 98–104. [Google Scholar] [CrossRef]
- Tun, Y.K.; Park, Y.M.; Le, T.H.T.; Han, Z.; Hong, C.S. A business model for resource sharing in cell-free UAVs-assisted wireless networks. IEEE Trans. Veh. Technol. 2022, 71, 8839–8852. [Google Scholar] [CrossRef]
- Mafakheri, B.; Heider-Aviet, A.; Riggio, R.; Goratti, L. Smart contracts in the 5G roaming architecture: The fusion of blockchain with 5G networks. IEEE Commun. Mag. 2021, 59, 77–83. [Google Scholar] [CrossRef]
- Refaey, A.; Hammad, K.; Magierowski, S.; Hossain, E. A blockchain policy and charging control framework for roaming in cellular networks. IEEE Netw. 2019, 34, 170–177. [Google Scholar] [CrossRef]
- Zhou, Z.; Wan, Y.; Cui, Q.; Yu, K.; Mumtaz, S.; Yang, C.N.; Guizani, M. Blockchain-Based Secure and Efficient Secret Image Sharing with Outsourcing Computation in Wireless Networks. IEEE Trans. Wirel. Commun. 2023, 23, 423–435. [Google Scholar] [CrossRef]
- Khan, A.U.; Javaid, N.; Khan, M.A.; Ullah, I. A blockchain scheme for authentication, data sharing and nonrepudiation to secure internet of wireless sensor things. Clust. Comput. 2023, 26, 945–960. [Google Scholar] [CrossRef]
- Xu, J.; Xue, K.; Tian, H.; Hong, J.; Wei, D.S.; Hong, P. An identity management and authentication scheme based on redactable blockchain for mobile networks. IEEE Trans. Veh. Technol. 2020, 69, 6688–6698. [Google Scholar] [CrossRef]
- Shastri, S.; Wasserman, M.; Chidambaram, V. The Seven Sins of {Personal-Data} Processing Systems under {GDPR}. In Proceedings of the 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19), Renton, WA, USA, 8 July 2019. [Google Scholar]
- Wu, Y.; Dai, H.N.; Wang, H.; Choo, K.K.R. Blockchain-based privacy preservation for 5G-enabled drone communications. IEEE Netw. 2021, 35, 50–56. [Google Scholar] [CrossRef]
- Hu, S.; Liang, Y.C.; Xiong, Z.; Niyato, D. Blockchain and artificial intelligence for dynamic resource sharing in 6G and beyond. IEEE Wirel. Commun. 2021, 28, 145–151. [Google Scholar] [CrossRef]
- Samir, E.; Wu, H.; Azab, M.; Xin, C.; Zhang, Q. DT-SSIM: A decentralized trustworthy self-sovereign identity management framework. IEEE Internet Things J. 2021, 9, 7972–7988. [Google Scholar] [CrossRef]
- Satybaldy, A.; Nowostawski, M.; Ellingsen, J. Self-Sovereign Identity Systems. In Proceedings of the IFIP International Summer School on Privacy and Identity Management, Windisch, Switzerland, 19–23 August 2019; Springer: Cham, Switzerland, 2019; pp. 447–461. [Google Scholar]
- Naik, N.; Jenkins, P. Sovrin network for decentralized digital identity: Analysing a self-sovereign identity system based on distributed ledger technology. In Proceedings of the 2021 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, 13 September–13 October 2021; pp. 1–7. [Google Scholar]
- Sekar, R.R.; Masna, A.; Sharma, S.; Abraham, A.; Pagilla, P.R. Decentralized Identity and Access Management (IAM) Using Blockchain. In Proceedings of the 2024 International Conference on Intelligent Systems for Cybersecurity (ISCS), Gurugram, India, 3–4 May 2024; pp. 1–6. [Google Scholar]
- Grabatin, M.; Hommel, W. Self-sovereign identity management in wireless ad hoc mesh networks. In Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 17–21 May 2021; pp. 480–486. [Google Scholar]
- Kirupanithi, D.N.; Antonidoss, A. Self-sovereign identity management system on blockchain based applications using chameleon hash. In Proceedings of the 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 386–390. [Google Scholar]
- Ding, Y.; Yu, J.; Li, S.; Sato, H.; Machizawa, M.G. Data aggregation management with self-sovereign identity in decentralized networks. IEEE Trans. Netw. Serv. Manag. 2024, 21, 6174–6189. [Google Scholar] [CrossRef]
- Čučko, Š.; Turkanović, M. Decentralized and self-sovereign identity: Systematic mapping study. IEEE Access 2021, 9, 139009–139027. [Google Scholar] [CrossRef]
- Butincu, C.N.; Alexandrescu, A. Design Aspects of Decentralized Identifiers and Self-Sovereign Identity Systems. IEEE Access 2024, 12, 60928–60942. [Google Scholar] [CrossRef]
- Fathalla, E.S.; Azab, M.; Xin, C.; Wu, H. PT-SSIM: A Proactive, Trustworthy Self-Sovereign Identity Management System. IEEE Internet Things J. 2023, 10, 17155–17169. [Google Scholar] [CrossRef]
- Besbas, A.; Ailane, A.; Kahloul, L.; Slatnia, S.; Bourekkache, S. On the Formal Verification of Smart Contracts and Blockchain: Challenges and Future Directions. In Proceedings of the 2024 4th International Conference on Embedded & Distributed Systems (EDiS), Bechar, Algeria, 3–5 November 2024; pp. 213–217. [Google Scholar] [CrossRef]
- Feist, J.; Grieco, G.; Groce, A. Slither: A static analysis framework for smart contracts. In Proceedings of the 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montreal, QC, Canada, 27 May 2019; pp. 8–15. [Google Scholar]
- Zhang, Y.; Chen, Z.; Shuai, Z.; Zhang, T.; Li, K.; Wang, J. Multiplex symbolic execution: Exploring multiple paths by solving once. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, Melbourne, VIC, Australia, 21–25 September 2020; pp. 846–857. [Google Scholar]
- Vaigandla, K.K.; Azmi, N.; Podila, R.; Karne, R.K. A Survey on Wireless Communications: 6g and 7g. Int. J. Sci. Technol. Manag. 2021, 2, 2018–2025. [Google Scholar] [CrossRef]
- Mehic, M.; Michalek, L.; Dervisevic, E.; Burdiak, P.; Plakalovic, M.; Rozhon, J.; Mahovac, N.; Richter, F.; Kaljic, E.; Lauterbach, F.; et al. Quantum cryptography in 5g networks: A comprehensive overview. IEEE Commun. Surv. Tutor. 2023, 26, 302–346. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathalla, E.; Azab, M. Decentralized Trace-Resistant Self-Sovereign Service Provisioning for Next-Generation Federated Wireless Networks. Information 2025, 16, 159. https://doi.org/10.3390/info16030159
Fathalla E, Azab M. Decentralized Trace-Resistant Self-Sovereign Service Provisioning for Next-Generation Federated Wireless Networks. Information. 2025; 16(3):159. https://doi.org/10.3390/info16030159
Chicago/Turabian StyleFathalla, Efat, and Mohamed Azab. 2025. "Decentralized Trace-Resistant Self-Sovereign Service Provisioning for Next-Generation Federated Wireless Networks" Information 16, no. 3: 159. https://doi.org/10.3390/info16030159
APA StyleFathalla, E., & Azab, M. (2025). Decentralized Trace-Resistant Self-Sovereign Service Provisioning for Next-Generation Federated Wireless Networks. Information, 16(3), 159. https://doi.org/10.3390/info16030159