Fiscal Management and Artificial Intelligence as Strategies to Combat Corruption in Colombia
Abstract
1. Introduction
- •
- Analyze the conceptual foundations linking fiscal oversight and technological innovation;
- •
- Describe the development and implementation of a GPT-based scoring model for internal control audits;
- •
- Evaluate the practical implications of AI integration for institutional efficiency, transparency, and accountability in public management.
2. Theoretical Framework
2.1. Defining Corruption
2.2. Typologies and Theoretical Approaches
- •
- Petty corruption (without theft): Bribes paid to expedite legally entitled services.
- •
- Administrative corruption: Bribes used to bypass rules, undermining public policy effectiveness.
- •
- State capture: Private interests influencing the formulation of laws and regulations through illicit means, differing from legitimate lobbying.
2.3. Empirical Evidence in Colombia
- •
- The total amount compromised by corruption during the 2016–2022 period represents approximately 9.8% of Colombia’s GDP in 2022;
- •
- The amount effectively lost due to corruption is equivalent to 1.5% of the national GDP;
- •
- The amount recovered corresponds to approximately 0.65% of GDP.
2.4. Fiscal Management as a Governance Instrument
2.5. International Frameworks in Public Management and Internal Control
2.5.1. The Common Assessment Framework (CAF)
2.5.2. The Whole-of-Government Approach (WOG)
2.5.3. The EFQM Excellence Model
2.5.4. COSO—Internal Control–Integrated Framework
2.5.5. INTOSAI Guidelines for Internal Control
2.5.6. European Commission Internal Control Framework
2.5.7. The Orange Book (UK)
2.6. Integrated Public Management and Internal Control Models in Colombia
2.7. AI-Powered Fiscal Control
2.8. AI Governance and Algorithmic Ethics
2.9. AI Adoption Challenges in Public-Sector Auditing
3. Methodological Approach
3.1. Study Design and Rationale
3.2. Dataset Description
- (1)
- Institutional Surveys. A structured questionnaire was distributed to 219 public entities, including ministries, departmental comptroller offices, and municipal audit units. Respondents included heads of internal control, planning, and financial oversight offices. The survey gathered quantitative and qualitative information on control practices, operational risk management, and perceived challenges in fiscal oversight.
- (2)
- Self-Assessments of Internal Accounting Control. Narrative responses were submitted by public entities to the Contaduría General de la Nación (CGN) via the Sistema Consolidador de Hacienda e Información Pública (CHIP). Each entity provided textual descriptions addressing nine standardized questions about their internal control and fiscal risk management processes. These qualitative data were the basis for the AI-driven scoring model, which automatically assigned risk scores on a 1–10 scale.
- (3)
- Fiscal Audit Findings and Sanctions. Aggregated data on fiscal responsibility proceedings, recovery of misused public funds, and the territorial distribution of audit results between 2020 and 2022 were collected. These records were used to triangulate and validate the AI-generated scores against real-world audit outcomes.
3.3. Population, Sample, and Data Sources
3.4. Data Ingestion and Pre-Processing
- •
- Normalization to UTF-8 and elimination of stray control characters;
- •
- Standardization of empty or “no answer” cells, which were flagged as missing and assigned a default risk score (refer to Section 3.6 in the document);
- •
- Tagging of metadata, encompassing entity type, level (national or territorial), and sector.
3.5. AI-Assisted Scoring System
Prompt Engineering and Scoring Rubric
3.6. Evaluation Metrics
3.7. Ethical, Legal, and Governance Considerations
4. Results
4.1. Corpus and Score Distributions
4.2. Human–AI Agreement and Calibration
4.3. Sectoral Patterns and Recurring Risk Themes
4.4. Anomalies, Composite Index, and Robustness Checks
5. Discussion
5.1. Territorial Disparities and Subnational Administrative Capacity
5.2. Linking AI-Assisted Oversight to Corruption Mitigation
5.3. Limitations
5.4. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Republic of Colombia. Ley 1474 de 2011. Diario Oficial, Bogotá D.C., Colombia, 12 July 2011. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=43292 (accessed on 18 June 2025).
- Monitor Ciudadano. Portal de Monitoreo de Casos de Corrupción en Colombia, 2025. Available online: https://www.monitorciudadano.co/ (accessed on 18 June 2025).
- Ayala García, J.; Bonet-Morón, J.; Pérez-Valbuena, G.J.; Heilbron-Fernández, E.J.; Suret-Leguizamón, J.D. La Corrupción en Colombia: Un Análisis Integral. Documentos de Trabajo sobre Economía Regional y Urbana 2022, 307. Available online: https://repositorio.banrep.gov.co/server/api/core/bitstreams/2c32665f-f630-4f1e-8a27-9bef95ae8d72/content (accessed on 18 June 2025).
- World Bank. Enhancing Government Effectiveness and Transparency: The Fight Against Corruption; World Bank: Washington, DC, USA, 2020; Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/435121593132063030 (accessed on 18 June 2025).
- United Nations Office on Drugs and Crime (UNODC). The Negative Impact of Corruption on the Enjoyment of Human Rights; UNODC: Vienna, Austria, 2021; Available online: https://www.unodc.org/unodc/en/corruption/publications.html (accessed on 18 June 2025).
- Gómez Portilla, K.; Gallón Gómez, S. El Impacto de la Corrupción sobre el Crecimiento Económico Colombiano, 1990–1999. Lect. Econ. 2002, 57, 49–86. Available online: https://ideas.repec.org/a/lde/journl/y2002i57p49-86.html (accessed on 18 June 2025). [CrossRef]
- Transparencia por Colombia. Radiografía de los Hechos de Corrupción en Colombia 2021–2022; Transparencia por Colombia: Bogotá, Colombia, 2023; Available online: https://transparenciacolombia.org.co/wp-content/uploads/2024/06/Radiografia-Corrupcion-VF-VF.pdf (accessed on 18 June 2025).
- Jimenez-Sanchez, F. Crisis and Corruption in Spain: Improving the Quality of Governance to Fight Corruption. Siyasal J. Political Sci. 2023, 32, 1–14. [Google Scholar] [CrossRef]
- Morgan Fullin Saldanha, D.; Nogueira Dias, C.; Guillaumon, S. Transparency and Accountability in Digital Public Services: Learning from the Brazilian Cases. Gov. Inf. Q. 2022, 39, 101680. [Google Scholar] [CrossRef]
- Teixeira, M.A.C.; Zuccolotto, R.; Spinelli, M.V.C.; Rodrigues, R.V. Transparency in Latin America: Argentina, Brazil, Colombia, and Mexico. In Handbook of Public Policy in Latin America; Edward Elgar Publishing: Cheltenham, UK, 2025. [Google Scholar] [CrossRef]
- Grindle, M. Jobs for the Boys: Patronage and the State in Comparative Perspective; Harvard University Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Mungiu-Pippidi, A. The Quest for Good Governance: How Societies Develop Control of Corruption; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- COSO. Internal Control—Integrated Framework; Committee of Sponsoring Organizations of the Treadway Commission: New York, NY, USA, 2013; Available online: https://www.coso.org (accessed on 18 June 2025).
- INTOSAI. INTOSAI GOV 9100—Guidelines for Internal Control Standards for the Public Sector; INTOSAI: Vienna, Austria, 2004; Available online: https://www.issai.org (accessed on 18 June 2025).
- Darmawati, D.; Jaafar, N.I.; HS, R.; Baja, H.K.; Purisamya, A.J.; Yolanda, A.M.W.; Amir, B.; Juanda, M.R.P. The Role of Artificial Intelligence in Improving the Efficiency and Accuracy of Local Government Financial Reporting: A Systematic Literature Review. J. Risk Financial Manag. 2025, 18, 601. [Google Scholar] [CrossRef]
- Cubillos, G.A.R. Impacto del Control Fiscal en Colombia. Rev. Colomb. Contab. 2024, 12, 1. [Google Scholar] [CrossRef]
- Contraloría General de la República. Estudio Sobre la Efectividad del Control Fiscal Interno en Colombia: Estudio Intersectorial; CGR: Bogotá, Colombia, 2023. [Google Scholar]
- Tanzi, V. Corruption, Arm’s-Length Relationships and Markets. In The Economics of Organised Crime; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Begovic, B. Corruption: Concepts, Types, Causes and Consequences; Center for Liberal-Democratic Studies: Belgrade, Serbia, 2005. [Google Scholar]
- Klitgaard, R. Controlling Corruption; University of California Press: Berkeley, CA, USA, 1988. [Google Scholar]
- Salamanca, L.J.G.; Salcedo-Albarán, E.; de León-Beltrán, I.; Guerrero, B. Conceptualizing State Capture in Latin America; Poder LatAm: Mexico City, Mexico, 2022. [Google Scholar]
- Castellanos, D. Pertinencia de la Implementación de un Sistema de Control Interno y Administración de Riesgos en las Entidades Públicas: Estudio de Caso del Proyecto de Remodelación de la Refinería de Cartagena (Reficar). Control Visible 2024, 3, 26–44. [Google Scholar] [CrossRef]
- Buitrago, F.; Ortíz, A. Monitor Ciudadano Report: 2016–2022; Monitor Ciudadano: Bogotá, Colombia, 2024; Available online: https://www.monitorciudadano.co/ (accessed on 18 June 2025).
- Departamento Administrativo Nacional de Estadística (DANE). Producto Interno Bruto—PIB 2022 (Cifras Preliminares); DANE: Bogotá, Colombia, 2023. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-anuales/pib (accessed on 18 June 2025).
- Congreso de Colombia. Ley 610 de 2000: Por la Cual se Establece el Trámite de los Procesos de Responsabilidad Fiscal de Competencia de las Contralorías; Congreso de la República: Bogotá, Colombia, 2000. [Google Scholar]
- OECD. Budgeting and Public Expenditures in OECD Countries 2019; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- EUPAN. Common Assessment Framework (CAF); European Public Administration Network: Brussels, Belgium, 2020; Available online: https://www.eupan.eu (accessed on 18 June 2025).
- Christensen, T.; Lægreid, P. Reformas Post Nueva Gestión Pública. Gestión Política Pública 2007, 16, 539–564. Available online: https://www.scielo.org.mx/pdf/gpp/v16n2/1405-1079-gpp-16-02-539.pdf (accessed on 18 June 2025).
- EFQM. EFQM Model 2025; EFQM: Brussels, Belgium, 2025. [Google Scholar]
- European Commission. Revision of the Internal Control Framework—Communication C(2017) 2373 Final; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- HM Treasury. The Orange Book: Management of Risk—Principles and Concepts; Government of the United Kingdom: London, UK, 2023. [Google Scholar]
- Departamento Administrativo de la Función Pública. Modelo Integrado de Planeación y Gestión (MIPG); DAFP: Bogotá, Colombia, 2024. Available online: https://www1.funcionpublica.gov.co/web/mipg (accessed on 18 June 2025).
- MinCiencias. Modelo Estándar de Control Interno (MECI); Ministerio de Ciencia, Tecnología e Innovación: Bogotá, Colombia, 2024. Available online: https://minciencias.gov.co/quienes_somos/control/control_modelo (accessed on 18 June 2025).
- Hernández-Royett, J.; Hernández, Y.F.; Gil, M.D.; Cárdenas Barbosa, E. Evaluación del Modelo Integrado de Planeación y Gestión (MIPG) en las Entidades Territoriales del Estado Colombiano. AGLALA 2018, 9, 444–463. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=6832778 (accessed on 18 June 2025).
- OECD. Auditing and AI: Improving Risk Detection and Control; OECD Publishing: Paris, France, 2022; Available online: https://www.oecd.org/gov/auditing-and-ai.htm (accessed on 18 June 2025).
- Vephkhvia Grigalashvili. Artificial Intelligence in Public Administration: An Ethical Dilemma. Int. J. Innov. Technol. Soc. Sci. 2025, 2, 46. [Google Scholar] [CrossRef]
- European Commission. Ethics Guidelines for Trustworthy AI; High-Level Expert Group on Artificial Intelligence: Brussels, Belgium, 2021; Available online: https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (accessed on 18 June 2025).
- Papagiannidis, E.; Mikalef, P.; Conboy, K. Responsible Artificial Intelligence Governance: A Review and Research Framework. J. Strateg. Inf. Syst. 2025, 34, 101885. [Google Scholar] [CrossRef]
- Kokina, J.; Blanchette, S.; Davenport, T.H.; Pachamanova, D. Challenges and Opportunities for Artificial Intelligence in Auditing: Evidence from the Field. Int. J. Account. Inf. Syst. 2025, 56, 100734. [Google Scholar] [CrossRef]
- Alon-Barkat, S.; Busuioc, M. Human–AI Interactions in Public Sector Decision Making: “Automation Bias” and “Selective Adherence” to Algorithmic Advice. J. Public Adm. Res. Theory 2023, 33, 153–176. [Google Scholar] [CrossRef]
- Mökander, J. Auditing of AI: Legal, Ethical and Technical Approaches. Digit. Soc. 2023, 9, 49. [Google Scholar] [CrossRef]
- Wuttke, A.; Rauchfleisch, A.; Jungherr, A. Artificial Intelligence in Government: Why People Feel They Lose Control. arXiv 2025, arXiv:2505.01085. [Google Scholar]
- Falleti, T.G. Decentralization and Subnational Politics in Latin America; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Dickovick, J.T. Decentralization and Recentralization in the Developing World: Comparative Studies from Africa and Latin America; Penn State Press: University Park, PA, USA, 2011. [Google Scholar]
- Pinilla-Rodríguez, D.E.; Hernández-Medina, P. Governance and Fiscal Decentralisation in Latin America: An Empirical Approach. Economies 2024, 12, 207. [Google Scholar] [CrossRef]
- Dávid-Barrett, E. State capture and development: A conceptual framework. J. Int. Relat. Dev. 2023, 26, 224–244. [Google Scholar] [CrossRef]
- OECD. Integrity for Good Governance in Latin America and the Caribbean; OECD Publishing: Paris, France, 2018. [Google Scholar]
- OECD. Advancing Accountability in AI; OECD Publishing: Paris, France, 2023; Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2023/02/advancing-accountability-in-ai_753bf8c8/2448f04b-en.pdf (accessed on 18 June 2025).




| Model | Origin | Focus | Key Principles | Structure |
|---|---|---|---|---|
| MIPG | Colombia | Integrated planning and management | Public value, accountability, interinstitutional articulation | 7 interdependent dimensions |
| MECI | Colombia | Internal control and risk management | Self-control, self-regulation, self-management | 5 components + 3 lines of defense |
| COSO | USA | Internal control and corporate governance | Control environment, risk assessment, monitoring | 5 components + sustainability controls |
| CAF | European Union | Public sector quality management | Leadership, partnerships, people, continuous improvement | Based on European excellence model |
| INTOSAI | International | Audit standards and internal control | Ethics, efficiency, protection of public resources | Adapted COSO framework |
| Orange Book | United Kingdom | Public sector risk management | Evidence-based governance, transparency, flexibility | Principle-based + risk control framework |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monsalvo, A.E.; Zuluaga-Pardo, C.M.; Restrepo-Carmona, J.A.; Aguilera-Pua, L.; Castaño, J.C.; Borda, E.F.; Villamil, R.M.; García, H.F.; Fletscher, L. Fiscal Management and Artificial Intelligence as Strategies to Combat Corruption in Colombia. Information 2025, 16, 998. https://doi.org/10.3390/info16110998
Monsalvo AE, Zuluaga-Pardo CM, Restrepo-Carmona JA, Aguilera-Pua L, Castaño JC, Borda EF, Villamil RM, García HF, Fletscher L. Fiscal Management and Artificial Intelligence as Strategies to Combat Corruption in Colombia. Information. 2025; 16(11):998. https://doi.org/10.3390/info16110998
Chicago/Turabian StyleMonsalvo, Ana E., Carlos M. Zuluaga-Pardo, Jaime A. Restrepo-Carmona, Lilibeth Aguilera-Pua, Juan C. Castaño, Edison F. Borda, Rosse M. Villamil, Hernán Felipe García, and Luis Fletscher. 2025. "Fiscal Management and Artificial Intelligence as Strategies to Combat Corruption in Colombia" Information 16, no. 11: 998. https://doi.org/10.3390/info16110998
APA StyleMonsalvo, A. E., Zuluaga-Pardo, C. M., Restrepo-Carmona, J. A., Aguilera-Pua, L., Castaño, J. C., Borda, E. F., Villamil, R. M., García, H. F., & Fletscher, L. (2025). Fiscal Management and Artificial Intelligence as Strategies to Combat Corruption in Colombia. Information, 16(11), 998. https://doi.org/10.3390/info16110998

