Enhancing Brain Tumour Multi-Classification Using Efficient-Net B0-Based Intelligent Diagnosis for Internet of Medical Things (IoMT) Applications
Abstract
:1. Introduction
- To design and implement a neural network model based on the EfficientNet architecture for the accurate classification of brain tumours;
- To optimize and fine-tune the EfficientNet model to achieve the highest possible accuracy and efficiency in brain tumour identification;
- To explore and apply various data augmentation and preprocessing techniques to increase the generalization capability of the EfficientNet model for accurate brain tumour classification;
- To evaluate the performance of the EfficientNet model using various metrics such as accuracy, precision, recall, and F1 score in classifying four brain tumour classes.
2. Literature Review
3. Methodology
- Cloud model deployment: The trained ML model is stored on the cloud for universal access by all he stakes holders.
- Machine learning model training and evaluation: This layer is responsible for data preprocessing, ML model training, and evaluation. The process of ML model training and evaluation is further explored in subsequent subsections.
- Medical predictions and data handling: This layer is responsible for providing an interface to the medical staff and medical equipment to use the deployed ML model for brain tumour classification. This layer also stores data regarding predictions made. The dataset in this layer is further used to train and improve the performance of the ML model.
3.1. Machine Learning Model’s Training and Evaluation
3.2. Dataset
3.3. Preprocessing
3.4. Machine Learning Model (EfficientNet-B0)
3.5. Fine-Tuned EfficientNet-B0 Model
3.6. Evaluation Metrics
3.6.1. Accuracy
Precision
3.6.2. Recall (Sensitivity)
3.6.3. F1 Score
4. Results
4.1. Performance of Simple EfficientNet-B0
4.2. Performance of Fine-Tuned EfficientNet-B0
4.3. Comparative Analysis with Existing Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.Q.; Chiu, K.S.; Liu, X.R.; Hsiao, T.Y.; Zhao, G.; Li, S.J.; Lin, C.P.; Sun, C.W. Polarization-sensitive optical coherence tomography for brain tumor characterization. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Graber, J.J.; Cobbs, C.S.; Olson, J.J. Congress of neurological surgeons systematic review and evidence-based guidelines on the use of stereotactic radiosurgery in the treatment of adults with metastatic brain tumors. Neurosurgery 2019, 84, E168–E170. [Google Scholar] [CrossRef] [PubMed]
- Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput. Med Imaging Graph. 2019, 75, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Bodapati, J.D.; Shaik, N.S.; Naralasetti, V.; Mundukur, N.B. Joint training of two-channel deep neural network for brain tumor classification. Signal Image Video Process. 2021, 15, 753–760. [Google Scholar] [CrossRef]
- Society, A.C. 2023. Available online: http://www.cancer.net/cancer-types/brain-tumor/statistics/ (accessed on 23 May 2024).
- Elhoseny, M.; Bian, G.B.; Lakshmanaprabu, S.; Shankar, K.; Singh, A.K.; Wu, W. Effective features to classify ovarian cancer data in internet of medical things. Comput. Networks 2019, 159, 147–156. [Google Scholar] [CrossRef]
- Din, I.U.; Guizani, M.; Kim, B.S.; Hassan, S.; Khan, M.K. Trust management techniques for the Internet of Things: A survey. IEEE Access 2018, 7, 29763–29787. [Google Scholar] [CrossRef]
- Huang, C.; Wang, J.; Wang, S.H.; Zhang, Y.D. Applicable artificial intelligence for brain disease: A survey. Neurocomputing 2022, 504, 223–239. [Google Scholar] [CrossRef]
- Hammad, M.; ElAffendi, M.; Ateya, A.A.; Abd El-Latif, A.A. Efficient brain tumor detection with lightweight end-to-end deep learning model. Cancers 2023, 15, 2837. [Google Scholar] [CrossRef] [PubMed]
- Meera, R.; Anandhan, P. A review on automatic detection of brain tumor using computer aided diagnosis system through MRI. EAI Endorsed Trans. Energy Web 2018, 5, e17. [Google Scholar]
- Zulfiqar, F.; Bajwa, U.I.; Mehmood, Y. Multi-class classification of brain tumor types from MR images using EfficientNets. Biomed. Signal Process. Control 2023, 84, 104777. [Google Scholar] [CrossRef]
- Asiri, A.A.; Iqbal, A.; Ferzund, J.; Ali, T.; Aamir, M.; Alshamrani, K.A.; Alshamrani, H.A.; Alqahtani, F.F.; Irfan, M.; Alshehri, A.H. A Novel Hybrid Machine Learning Approach for Classification of Brain Tumor Images. Comput. Mater. Contin. 2022, 73. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, Y.; Khosravi, M.R.; Wan, S. Class consistent and joint group sparse representation model for image classification in internet of medical things. Comput. Commun. 2021, 166, 57–65. [Google Scholar] [CrossRef]
- Díaz-Pernas, F.J.; Martínez-Zarzuela, M.; Antón-Rodríguez, M.; González-Ortega, D. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare 2021, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Brindha, P.G.; Kavinraj, M.; Manivasakam, P.; Prasanth, P. Brain tumor detection from MRI images using deep learning techniques. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, China, 12–14 November 2021; IOP Publishing: Bristol, UK, 2021; Volume 1055, p. 012115. [Google Scholar]
- Kakarla, J.; Isunuri, B.V.; Doppalapudi, K.S.; Bylapudi, K.S.R. Three-class classification of brain magnetic resonance images using average-pooling convolutional neural network. Int. J. Imaging Syst. Technol. 2021, 31, 1731–1740. [Google Scholar] [CrossRef]
- Ganesan, M.; Sivakumar, N.; Thirumaran, M. Internet of medical things with cloud-based e-health services for brain tumour detection model using deep convolution neural network. Electron. Gov. Int. J. 2020, 16, 69–83. [Google Scholar] [CrossRef]
- Kibriya, H.; Masood, M.; Nawaz, M.; Rafique, R.; Rehman, S. Multiclass brain tumor classification using convolutional neural network and support vector machine. In Proceedings of the 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC), Karachi, Pakistan, 15–17 July 2021; IEEE: New York, NY, USA, 2021; pp. 1–4. [Google Scholar]
- Kibriya, H.; Masood, M.; Nawaz, M.; Nazir, T. Multiclass classification of brain tumors using a novel CNN architecture. Multimed. Tools Appl. 2022, 81, 29847–29863. [Google Scholar] [CrossRef]
- Tripathi, P.C.; Bag, S. A computer-aided grading of glioma tumor using deep residual networks fusion. Comput. Methods Programs Biomed. 2022, 215, 106597. [Google Scholar] [CrossRef]
- Isunuri, B.V.; Kakarla, J. Three-class brain tumor classification from magnetic resonance images using separable convolution based neural network. Concurr. Comput. Pract. Exp. 2022, 34, e6541. [Google Scholar] [CrossRef]
- Deepak, S.; Ameer, P. Automated categorization of brain tumor from mri using cnn features and svm. J. Ambient Intell. Humaniz. Comput. 2021, 12, 8357–8369. [Google Scholar] [CrossRef]
- Vankdothu, R.; Hameed, M.A.; Ameen, A.; Unnisa, R. Brain image identification and classification on Internet of Medical Things in healthcare system using support value based deep neural network. Comput. Electr. Eng. 2022, 102, 108196. [Google Scholar] [CrossRef]
- Kamil, O.A.; Al-Shammari, S.W. IoT framework for brain tumor classification using optimized CNN-MRFO model. Am. J. Bioinform. Res. 2021, 11, 32–37. [Google Scholar]
- Rajathi, G.I.; Kumar, R.R.; Ravikumar, D.; Joel, T.; Kadry, S.; Jeong, C.W.; Nam, Y. Brain Tumor Diagnosis Using Sparrow Search Algorithm Based Deep Learning Model. Comput. Syst. Sci. Eng. 2023, 44, 1793–1806. [Google Scholar] [CrossRef]
- Kurdi, S.Z.; Ali, M.H.; Jaber, M.M.; Saba, T.; Rehman, A.; Damaševičius, R. Brain tumor classification using meta-heuristic optimized convolutional neural networks. J. Pers. Med. 2023, 13, 181. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Islam, M.S. A Hybrid Deep CNN-SVM Approach for Brain Tumor Classification. J. Inf. Syst. Eng. Bus. Intell. 2023, 9. [Google Scholar] [CrossRef]
- Hamada, A. Br35H :: Brain Tumor Detection 2020. 2020. Available online: https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection (accessed on 12 July 2024).
- Filatov, D.; Ahmad Hassan Yar, G.N. Brain tumor diagnosis and classification via pre-trained convolutional neural networks. medRxiv 2022, arXiv:2208.00768. [Google Scholar]
- Gómez-Guzmán, M.A.; Jiménez-Beristaín, L.; García-Guerrero, E.E.; López-Bonilla, O.R.; Tamayo-Perez, U.J.; Esqueda-Elizondo, J.J.; Palomino-Vizcaino, K.; Inzunza-González, E. Classifying brain tumors on magnetic resonance imaging by using convolutional neural networks. Electronics 2023, 12, 955. [Google Scholar] [CrossRef]
- Rajkumar, S.; Karthick, K.; Selvanathan, N.; Saravanan, U.B.; Murali, M.; Dhiyanesh, B. Brain Tumor Detection Using Deep Learning Neural Network for Medical Internet of Things Applications. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 8–10 July 2021; pp. 1–8. [Google Scholar]
Ref. | Technique | No of Classes | Accuracy | Limitation |
---|---|---|---|---|
[17] | IoMT-CNN | 2 | 98% | No preprocessing |
[19] | GoogleNet and ResNet-18 | 3 | 98% | Fewer evaluation parameters |
[15] | ANN and CNN | 2 | 89% | Fewer layers and filters |
[16] | APN and CNN | 3 | 97% | Fewer evaluation parameters |
[14] | CNN | 2 | 97% | Preprocessing of images |
[20] | Deep residual network | 2 | 95% | Small dataset |
[21] | S-CNN | 3 | 97% | Less preprocessing of dataset |
[23] | IoMT-SDNN | 2 | 94% | Result improvement |
[26] | CNN | 2 | 98% | Small dataset |
[27] | CNN and SVM | 3 | 96% | Minimum accuracy result |
[24] | IoMT CNN MRFO | 3 | 98% | Small dataset |
[22] | CNN & SVM | 3 | 95% | Minimum number of images in dataset |
[25] | IoMTC HDBT | 2 | 98% |
Dataset | No. of Images | Purpose |
---|---|---|
Training | 501 | Training the model |
Validation | 202 | Validating the model during training |
Testing | 101 | Testing the model on unused data |
Technique | Description | Parameters | Example Application |
---|---|---|---|
Resizing | Adjusting the size. | 224 × 224 × 3 | Standardizing image dimensions. |
Rotation | Rotating the image. | Rotation: 15° | Introducing variability in orientation. |
Translation | Shifting the image. | Width Shift Range: 0.1 | |
Height Shift Range: 0.1 | Simulating minor movements in the image plane. | ||
Shearing | Distorting the image by shifting one part of the image in one direction. | Shear Range: 0.1 | Creating slight slanting effects. |
Zooming | Changing the scale of the image. | Zoom Range: 0.1 | Zooming in and out to simulate different distances. |
Flipping | Flipping the image horizontally or vertically. | Horizontal Flip: True | Mirroring the image to introduce symmetry. |
Fill Mode | Filling in newly created pixels during transformations. | Mode: Nearest | Preventing empty spaces during transformations. |
Median Filter | Reducing noise in the image. | Smoothing images while preserving edges. | |
CLAHE | Enhancing contrast in the image. | NA | Improving the visibility of details in MRI images. |
Combined Median and CLAHE | Applying Median filter followed by CLAHE. | NA | Removing noise and enhancing contrast in MRI images. |
Class | Precision | Recall | F1 Score |
---|---|---|---|
Glioma | 0.90 | 0.94 | 0.92 |
No tumour | 0.99 | 0.90 | 0.94 |
Meningioma | 0.86 | 0.90 | 0.88 |
Pituitary | 0.95 | 0.98 | 0.96 |
Accuracy | — | — | 0.93 |
Class | Precision | Recall | F1 Score |
---|---|---|---|
Glioma | 1.00 | 1.00 | 1.00 |
No tumour | 0.99 | 1.00 | 1.00 |
Meningioma | 0.99 | 0.99 | 0.99 |
Pituitary | 0.99 | 0.99 | 0.99 |
Accuracy | — | — | 0.99 |
Ref. | Method | Accuracy |
---|---|---|
[29] | Pretrained CNN, ResNet50,EfficientNetB1, EfficientNetB7, EfficientNetV2B1 | 87.67% |
[30] | Public CNN, ResNet50, Inception V3, Xception, MobileNetV2 and EfficientNetB0. | 97.12% |
[24] | IoT-based CNN-MRFO Model | 98.57% |
[31] | IoMT–deep learning neural network model | 90% |
Fine-Tuned EffecientNet-B0 | EfficientNet-B0& IoMT-based multi-classification of brain tumours | 99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, A.; Jaffar, M.A.; Jahangir, R. Enhancing Brain Tumour Multi-Classification Using Efficient-Net B0-Based Intelligent Diagnosis for Internet of Medical Things (IoMT) Applications. Information 2024, 15, 489. https://doi.org/10.3390/info15080489
Iqbal A, Jaffar MA, Jahangir R. Enhancing Brain Tumour Multi-Classification Using Efficient-Net B0-Based Intelligent Diagnosis for Internet of Medical Things (IoMT) Applications. Information. 2024; 15(8):489. https://doi.org/10.3390/info15080489
Chicago/Turabian StyleIqbal, Amna, Muhammad Arfan Jaffar, and Rashid Jahangir. 2024. "Enhancing Brain Tumour Multi-Classification Using Efficient-Net B0-Based Intelligent Diagnosis for Internet of Medical Things (IoMT) Applications" Information 15, no. 8: 489. https://doi.org/10.3390/info15080489
APA StyleIqbal, A., Jaffar, M. A., & Jahangir, R. (2024). Enhancing Brain Tumour Multi-Classification Using Efficient-Net B0-Based Intelligent Diagnosis for Internet of Medical Things (IoMT) Applications. Information, 15(8), 489. https://doi.org/10.3390/info15080489