FIWARE-Compatible Smart Data Models for Satellite Imagery and Flood Risk Assessment to Enhance Data Management
Abstract
:1. Introduction
- Establish two Smart Data Models, Satellite Imagery and Risk Management, based on the FIWARE NGSI-LD standard to foster data management processes.
- Assist in the set-up of a unified terminology and semantic representation of data generated by remote sensing and flood risk assessment processes to facilitate interoperability and data sharing.
- Propose and evaluate in real case scenarios a broader framework for seamless interaction with other components, featuring a multi-layered architecture.
- Relying on the proposed SDMs, the integration of advanced Machine Learning and AI technologies for a wide range of EO and flood crisis management applications can be adopted.
2. Background
- A data model is a set of data structures that mainly describes data types, properties, and relationships. The data structure is the basic part on which operations and constraints are structured.
- A data model is a set of operators and inference rules that mainly describe types and methods of operation in a particular data structure.
- A data model is a set of comprehensive constraints that can be used to describe syntax, dependencies, and constraints of data to ensure its accuracy, validity, and compatibility.
Smart Data Models by FIWARE
3. Methodology
3.1. General Considerations
3.2. Framework
4. Validation of the Smart Data Models
4.1. Scenaria Description
4.2. Quantitative Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AoI | Area of Interest |
DEM | Digital Elevation Model |
DT | Digital Twins |
DTDL | Digital Twin Definition Language |
DRR | Disaster Risk Reduction |
EaR | Elements at Risk |
Ep | Exposure of people |
Ee | Exposure of economic activity |
Ea | Exposure of environment and cultural elements |
EO | Earth Observation |
FFPI | Flash-Flood Potential Index |
FHR | Flood Hazard Rating |
FRMP | Flood Risk Management Plan |
GIS | Geographical Information System |
LIDAR | Laser Imaging, Detection And Ranging |
LULC | Land Use Land Cover |
IoT | Internet of Things |
SAR | Synthetic Aperture Radar |
SNAP | Sentinel Application Platform |
TRI | Terrain Ruggedness Index |
TWI | Topographic Wetness Index |
Vp | Vulnerability of people |
Ve | Vulnerability of economic activities |
Va | Vulnerability of environments and cultural–archaeological assets |
and protected areas | |
WAO | Water Authority Operator |
WUO | Water Utility Operator |
WSO | Water Supply Operator |
Appendix A
Appendix A.1. NGSI-LD Context Broker
Appendix A.2. Satellite Imagery Data Model
Appendix A.2.1. Design of the Satellite Imagery Model
Appendix A.2.2. Description of the Satellite Imagery Data Model
Appendix A.3. GIS Data Model
Appendix A.4. Risk Management Data Model
Appendix A.4.1. Design of the Flood Risk Management Data Model
Appendix A.4.2. Description of the Flood Risk Management Data Model
Appendix A.5
Appendix A.6
Available Information and Inputs for the Models | Model and Process | Actor(s) Involved | Result of the Process | Action/Informed Decision Taken by the Actors |
---|---|---|---|---|
Sensor abruptly stopped | Sensor detection:
| Water Supply Operator (WSO) who is monitoring the sensors’ status. | GIS map interface:
| WSO:
|
| GIS interface:
| Water Authority Operator (WAO) | GIS analysis highlights wells in flood risk area mapped by FRMP | WAO understands that the issue may be linked to the flood of the Isonzo river WAO decides to check for satellite data to confirm the result |
Satellite data | Flood detection | WAO | Production of the following layers:
|
WAO:
|
Satellite data | Flood Risk Management Data Model | WAO | Production of the following layers:
| |
Ongoing crisis | Flood Risk Management Data Model | WAO | Crisis scenarios:
| WUO takes action following the internal company procedure to fix the issue. |
Sensors measures return to normal | Sensor’s status | WSO, WAO | All the sensors on the map show green color. | The issue is resolved and the crisis de-escalated. |
Available Information and Inputs for the Models | Model and Process | Actor(s) Involved | Result of the Process | Action/informed Decision Taken by the Actors |
---|---|---|---|---|
Receiving information of:
| Hydraulic model | WUO | Visualization of:
| WUO:
|
Satellite data | Satellite Imagery data model | WAO | Production of the following layers:
| WAO after the estimation of:
|
Satellite Imagery data model output | Flood Risk Management data model | WAO | Production of the following layers:
| |
Social media posts (Tweets) | Social media posts (TSocial media analysis toolkitweets) | WAO | Social media report on the map regarding the flood in Trieste near the harbor. | |
GIS static topography layers of the water distribution network. | Layers comparison | WAO | Pipes in the flood report | WAO communicates the information to the WUO to allow the water supply company to take suitable action to repair the pipe |
References
- Garrido-Baserba, M.; Corominas, L.; Cortés, U.; Rosso, D.; Poch, M. The Fourth-Revolution in the Water Sector Encounters the Digital Revolution. Environ. Sci. Technol. 2020, 54, 4698–4705. [Google Scholar] [CrossRef] [PubMed]
- Hubert, J.; Wang, Y.; Garcia Alonso, E.; Minguez, R. Using Artificial Intelligence for Smart Water Management Systems; Series ADB Briefs; Asian Development Bank (ADB): Manila, Philippines, 2020. [Google Scholar] [CrossRef]
- Li, X.; Eckert, M.; Martinez, J.F.; Rubio, G. Context Aware Middleware Architectures: Survey and Challenges. Sensors 2015, 15, 20570–20607. [Google Scholar] [CrossRef] [PubMed]
- Hassani, A.; Medvedev, A.; Zaslavsky, A.; Haghighi, P.D.; Jayaraman, P.P.; Ling, S. Efficient Execution of Complex Context Queries to Enable Near Real-Time Smart IoT Applications. Sensors 2019, 19, 5457. [Google Scholar] [CrossRef]
- Krishnan, S.R.; Nallakaruppan, M.K.; Chengoden, R.; Koppu, S.; Iyapparaja, M.; Sadhasivam, J.; Sethuraman, S. Smart Water Resource Management Using Artificial Intelligence: A Review. Sustainability 2022, 14, 13384. [Google Scholar] [CrossRef]
- Ekeu-wei, I.T.; Blackburn, G.A. Applications of Open-Access Remotely Sensed Data for Flood Modelling and Mapping in Developing Regions. Hydrology 2018, 5, 39. [Google Scholar] [CrossRef]
- Ban, H.J.; Kwon, Y.J.; Shin, H.; Ryu, H.S.; Hong, S. Flood Monitoring Using Satellite-Based RGB Composite Imagery and Refractive Index Retrieval in Visible and Near-Infrared Bands. Remote Sens. 2017, 9, 313. [Google Scholar] [CrossRef]
- Sayers, P.; Li, Y.; Galloway, G.; Penning-Rowsell, E.; Shen, F.; Wen, K.; Chen, Y.; Le Quesne, T. Flood Risk Management: A Strategic Approach; UNESCO: Paris, France, 2013. [Google Scholar]
- Thakuri, S.; Parajuli, B.P.; Shakya, P.; Baskota, P.; Pradhan, D.; Chauhan, R. Open-Source Data Alternatives and Models for Flood Risk Management in Nepal. Remote Sens. 2022, 14, 5660. [Google Scholar] [CrossRef]
- The World Bank. Flood Risk Modeling to Support Risk Transfer: Challenges and Opportunities in Data-Scarce Contexts. 2023. Available online: https://www.insdevforum.org/knowledge/idf-reports-publications/report-flood-risk-modeling-to-support-risk-transfer-challenges-and-opportunities-in-data-scarce-contexts/ (accessed on 6 July 2023).
- Poljansek, K.; Marin Ferrer, M.; De Groeve, T.; Clark, I. Science for Disaster Risk Management 2017: Knowing Better and Losing Less; Number EUR 28034 in JRC102482; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar] [CrossRef]
- UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030. 2015. Available online: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 (accessed on 20 September 2022).
- EEA. Mapping the Impacts of Natural Hazards and Technological Accidents in Europe, an Overview of the Last Decade; Technical report 13/2010; European Environment Agency: Luxembourg, 2010. [Google Scholar]
- UNISDR. United Nations International Strategy for Disaster Reduction (UNISDR) Terminology on Disaster Risk Reduction; UNISDR: Geneva, Switzerland, 2009. [Google Scholar]
- Stein, U.; Bueb, B.; Englund, A.; Elelman, R.; Amorsi, N.; Lombardo, F.; Corchero, A.; Brékine, A.; Aquillar, F.; Ferri, M.; et al. Digitalisation in the Water Sector. Recommendations for Policy Developments at EU Level; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Petrasch, R.; Petrasch, R. Data Integration and Interoperability: Towards a Model-Driven and Pattern-Oriented Approach. Modelling 2022, 3, 105–126. [Google Scholar] [CrossRef]
- Halevy, A.; Doan, A.; Ives, Z.G. Principles of Data Integration; Morgan Kaufmann: Oxford, UK, 2012. [Google Scholar]
- Antzoulatos, G.; Kouloglou, I.O.; Bakratsas, M.; Moumtzidou, A.; Gialampoukidis, I.; Karakostas, A.; Lombardo, F.; Fiorin, R.; Norbiato, D.; Ferri, M.; et al. Flood Hazard and Risk Mapping by Applying an Explainable Machine Learning Framework Using Satellite Imagery and GIS Data. Sustainability 2022, 14, 3251. [Google Scholar] [CrossRef]
- Mostajabi, F.; Safaei, A.; Sahafi, A. A Systematic Review of Data Models for the Big Data Problem. IEEE Access 2021, 9, 128889–128904. [Google Scholar] [CrossRef]
- Carvalho, G.; Mykolyshyn, S.; Cabral, B.; Bernardino, J.; Pereira, V. Comparative Analysis of Data Modeling Design Tools. IEEE Access 2021, 10, 3351–3365. [Google Scholar] [CrossRef]
- Connolly, T.M.; Begg, C.E. Database Solutions: A Step-by-Step Approach to Building Databases; Addison-Wesley Professional: Glenview, IL, USA, 1999. [Google Scholar]
- Zheng, Z.; Du, Z.; Li, L.; Guo, Y. BigData Oriented Open Scalable Relational Data Model. In Proceedings of the 2014 IEEE International Congress on Big Data, Anchorage, AK, USA, 27 June–2 July 2014; pp. 398–405. [Google Scholar] [CrossRef]
- Cirillo, F.; Solmaz, G.; Berz, E.; Bauer, M.; Cheng, B.; Kovacs, E. A Standard-Based Open Source IoT Platform: FIWARE. IEEE Internet Things Mag. 2019, 2, 12–18. [Google Scholar] [CrossRef]
- Ivan, T.; Bogićević, L.; Trikoš, M.; Lalović, K. FIWARE: A web of things development platform. Mil. Tech. Cour. 2018, 66, 880–899. [Google Scholar] [CrossRef]
- Vosinakis, G.; Maltezos, E.; Krommyda, M.; Ouzounoglou, E.; Amditis, A. Data Integration, Harmonization and Provision Toolkit for Water Resource Management and Prediction Support. In WIT Transactions on The Built Environment; WIT Press: Southampton, UK, 2022. [Google Scholar] [CrossRef]
- GS CIM 009 - V1.7.1; Context Information Management (CIM); NGSI-LD API. ETSI: Nice, France, 2023. Available online: https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.07.01_60/gs_cim009v010701p.pdf (accessed on 2 April 2024).
- GS CIM 006; Context Information Management (CIM); Information Model (MOD0). ETSI: Nice, France, 2017. Available online: https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=51351 (accessed on 2 April 2024).
- Baca Gómez, Y.; Estrada Esquivel, H.; Martínez-Rebollar, A.; Villanueva, D. A Novel Air Quality Monitoring Unit Using Cloudino and FIWARE Technologies. Math. Comput. Appl. 2019, 24, 15. [Google Scholar] [CrossRef]
- Alonso, A.; Pozo Huertas, A.; Cantera, J.; Vega, F.; Hierro, J. Industrial Data Space Architecture Implementation Using FIWARE. Sensors 2018, 18, 2226. [Google Scholar] [CrossRef]
- Muñoz, J.; López-Pernas, S.; Conde, J.; Alonso, A.; Salvachua, J.; Hierro, J. Enabling Context-Aware Data Analytics in Smart Environments: An Open Source Reference Implementation. Sensors 2021, 21, 7095. [Google Scholar] [CrossRef]
- Conde, J.; Muñoz, J.; Alonso, A.; López-Pernas, S.; Salvachua, J. Modeling Digital Twin Data and Architecture: A Building Guide with FIWARE as Enabling Technology. IEEE Internet Comput. 2021, 26, 7–14. [Google Scholar] [CrossRef]
- Muñoz, J.; López-Pernas, S.; Pozo Huertas, A.; Alonso, A.; Salvachua, J.; Huecas, G. Data Usage and Access Control in Industrial Data Spaces: Implementation Using FIWARE. Sustainability 2020, 12, 3885. [Google Scholar] [CrossRef]
- Muñoz, J.; López-Pernas, S.; Pozo Huertas, A.; Alonso, A.; Salvachua, J.; Huecas, G. An Architecture for Providing Data Usage and Access Control in Data Sharing Ecosystems. Procedia Comput. Sci. 2019, 160, 590–597. [Google Scholar] [CrossRef]
- Alonso, A.; Pozo Huertas, A.; Gordillo, A.; López-Pernas, S.; Muñoz, J.; Marco, L.; Barra, E. Enhancing University Services by Extending the eIDAS European Specification with Academic Attributes. Sustainability 2020, 12, 770. [Google Scholar] [CrossRef]
- Barnum, C.M. Usability Testing Essentials; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- ISO 9241-11:2018; Ergonomics Of Human-System Interaction—Part 11: Usability: Definitions And Concepts. ISO: Beijing, China, 2018. Available online: https://webstore.ansi.org/search/find?in=1&st=ISO+9241-11 (accessed on 2 April 2024).
- Kumar, V.; Azamathulla, H.M.; Sharma, K.V.; Mehta, D.J.; Maharaj, K.T. The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management. Sustainability 2023, 15, 10543. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouloglou, I.-O.; Antzoulatos, G.; Vosinakis, G.; Lombardo, F.; Abella, A.; Bakratsas, M.; Moumtzidou, A.; Maltezos, E.; Gialampoukidis, I.; Ouzounoglou, E.; et al. FIWARE-Compatible Smart Data Models for Satellite Imagery and Flood Risk Assessment to Enhance Data Management. Information 2024, 15, 257. https://doi.org/10.3390/info15050257
Kouloglou I-O, Antzoulatos G, Vosinakis G, Lombardo F, Abella A, Bakratsas M, Moumtzidou A, Maltezos E, Gialampoukidis I, Ouzounoglou E, et al. FIWARE-Compatible Smart Data Models for Satellite Imagery and Flood Risk Assessment to Enhance Data Management. Information. 2024; 15(5):257. https://doi.org/10.3390/info15050257
Chicago/Turabian StyleKouloglou, Ioannis-Omiros, Gerasimos Antzoulatos, Georgios Vosinakis, Francesca Lombardo, Alberto Abella, Marios Bakratsas, Anastasia Moumtzidou, Evangelos Maltezos, Ilias Gialampoukidis, Eleftherios Ouzounoglou, and et al. 2024. "FIWARE-Compatible Smart Data Models for Satellite Imagery and Flood Risk Assessment to Enhance Data Management" Information 15, no. 5: 257. https://doi.org/10.3390/info15050257
APA StyleKouloglou, I. -O., Antzoulatos, G., Vosinakis, G., Lombardo, F., Abella, A., Bakratsas, M., Moumtzidou, A., Maltezos, E., Gialampoukidis, I., Ouzounoglou, E., Vrochidis, S., Amditis, A., Kompatsiaris, I., & Ferri, M. (2024). FIWARE-Compatible Smart Data Models for Satellite Imagery and Flood Risk Assessment to Enhance Data Management. Information, 15(5), 257. https://doi.org/10.3390/info15050257