Quantum Information: Systems, Their States, and the Use of Variances
Abstract
:1. Introduction
2. Of Quantum Systems, Their Pure or Mixed States, and Mean Values in These States
2.1. The Ensembles and Introduced by FH
2.2. More on Pure or Mixed States
2.3. A Consequence of the Definition of the Statistical Operator
3. Spin Components of the Spin Assembly: Useful Results
3.1. Spin Assembly in the Pure State
3.1.1. The Component and Pure State
3.1.2. The Component, and Again Pure State
3.2. and the Mixed State
3.3. The Totally Unpolarized Mixture
3.4. Exchanging the Roles of X and Z
4. The Origins of the Difference in the Values of Variances Found by FH
5. Discussion
5.1. Calculations of Variances in a Pure State
5.2. FH and the Avogadro Number
5.3. Still Trying to Understand the Results from FH
5.4. FH and a Book from Sakurai
5.5. Before Concluding
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: London, UK, 1955. [Google Scholar]
- von Neumann, J. Mathematische Grundlagen der Quantenmechanik; Springer: Berlin/Heidelberg, Germany, 1932. [Google Scholar]
- Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Bell, J.S. Against “Measurement”. Phys. World 1990, 3, 33–41. [Google Scholar] [CrossRef]
- Bell, J.S. Against “Measurement”. In Proceedings of the NATO International School of History: ”Sixty-Two Years of Uncertainty” Erice, August 5–15 1989; NATO ASI Series B Physics; Miller, A.I., Ed.; Plenum Press: New York, NY, USA; London, UK, 1990; pp. 17–31. [Google Scholar]
- Zeh, H.D. On the Interpretation of Measurement in Quantum Theory. Found. Phys. 1970, 1, 69–76. [Google Scholar] [CrossRef]
- Nenashev, A.V. Why state of quantum system is fully defined by density matrix. arXiv 2016, arXiv:1601.08205v1. [Google Scholar]
- Siomau, M.; Fritzsche, S. Quantum computing with mixed states. Eur. Phys. J. D 2011, 62, 449–456. [Google Scholar] [CrossRef]
- Fratini, F.; Hayrapetyan, A.G. Underlining some limitations of the statistical formalism in quantum mechanics. Phys. Scr. 2011, 84, 035008. [Google Scholar] [CrossRef]
- Bodor, A.; Diósi, L. Comment on “Underlining some limitations of the statistical formalism in quantum mechanics” by Fratini and Hayrapetyan. arXiv 2012, arXiv:1110.4549v1. [Google Scholar]
- Fratini, F.; Hayrapetyan, A.G. Underlining some limitations of the statistical formalism in quantum mechanics: Reply to the Comment of Bodor and Diósi. arXiv 2012, arXiv:1204.1071v1. [Google Scholar]
- Ballentine, L.E. Quantum Mechanics: A Modern Development; World Scientific: Singapore, 1998. [Google Scholar]
- Sakurai, J.J. Modern Quantum Mechanics, 2nd ed.; Maddison-Wesley: San Francisco, CA, USA, 1994. [Google Scholar]
- Weyl, H. Quantenmechanik und Gruppentheorie. Z. Phys. 1927, 46, 1–46. [Google Scholar] [CrossRef]
- Dirac, P.A.M. A new notation for quantum mechanics. Math. Proc. Camb. Philos. Soc. 1939, 35, 416–418. [Google Scholar] [CrossRef]
- Weinberg, S. Lectures on Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Fano, U. Description of States in Quantum Mechanics by Density and Operator Techniques. Rev. Mod. Phys. 1957, 29, 74–93. [Google Scholar] [CrossRef]
- Mathews, J.; Walker, R.L. Mathematical Methods of Physics; Benjamin: New York, NY, USA, 1965. [Google Scholar]
- Ohya, M.; Volovich, I. Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-Systems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 13–164. [Google Scholar] [CrossRef]
- Buchachenko, A.L.; Dalidchik, F.I.; Shub, B.R. Single spin ESR. Chem. Phys. Lett. 2001, 340, 103–108. [Google Scholar] [CrossRef]
- Deville, A.; Deville, Y. Random-coefficient pure states, the density operator formalism and the Zeh problem. arXiv 2024, arXiv:2201.03248v4. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deville, A.; Deville, Y. Quantum Information: Systems, Their States, and the Use of Variances. Information 2024, 15, 247. https://doi.org/10.3390/info15050247
Deville A, Deville Y. Quantum Information: Systems, Their States, and the Use of Variances. Information. 2024; 15(5):247. https://doi.org/10.3390/info15050247
Chicago/Turabian StyleDeville, Alain, and Yannick Deville. 2024. "Quantum Information: Systems, Their States, and the Use of Variances" Information 15, no. 5: 247. https://doi.org/10.3390/info15050247
APA StyleDeville, A., & Deville, Y. (2024). Quantum Information: Systems, Their States, and the Use of Variances. Information, 15(5), 247. https://doi.org/10.3390/info15050247