Quantum-Mechanical Modelling of Asymmetric Opinion Polarisation in Social Networks
Abstract
:1. Introduction
2. Quantised Energy Level Model of the System of Human Beliefs
3. Results
3.1. Opinion Polarisation in Social Networks
3.2. Opinion Radicalisation
4. Discussion
4.1. The Origin of Quantum Advantage in Models of Social Media
4.2. Quantum-Mechanical Model vs. Statistics-Based and Data Science-Driven Approaches
4.3. Integration with Bot-Detection Systems and Decision-Making Software
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Additional Discussion and Future Research Directions
References
- Redlawsk, D.P. Hot cognition or cool consideration? Testing the effects of motivated reasoning on political decision making. J. Politics 2002, 64, 1021–1044. [Google Scholar] [CrossRef]
- Van Bavel, J.J.; Pereira, A. The partisan brain: An identity-based model of political belief. Trends Cogn. Sci. 2018, 22, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Bail, C.A.; Argyle, L.P.; Brown, T.W.; Bumpus, J.P.; Chen, H.; Hunzaker, M.B.F.; Lee, J.; Mann, M.; Merhout, F.; Volfovsky, A. Exposure to opposing views on social media can increase political polarization. Proc. Natl. Acad. Sci. USA 2018, 115, 9216–9221. [Google Scholar] [CrossRef] [PubMed]
- Nyhan, B. Why the backfire effect does not explain the durability of political misperceptions. Proc. Natl. Acad. Sci. USA 2021, 118, e1912440117. [Google Scholar] [CrossRef] [PubMed]
- Nyhan, B.; Reifler, J. When corrections fail: The persistence of political misperceptions. Political Behav. 2010, 32, 303–330. [Google Scholar] [CrossRef]
- Liebertz, S.; Bunch, J. Backfiring frames: Abortion politics, religion, and attitude resistance. Politics Relig. 2021, 14, 403–430. [Google Scholar] [CrossRef]
- Thomm, E.; Gold, B.; Betsch, T.; Bauer, J. When preservice teachers’ prior beliefs contradict evidence from educational research. Br. J. Educ. Psychol. 2021, 91, 1055–1072. [Google Scholar] [CrossRef]
- Ma, Y.; Dixon, G.; Hmielowski, J.D. Psychological reactance from reading basic facts on climate change: The role of prior views and political identification. Environ. Commun. 2019, 13, 71–86. [Google Scholar] [CrossRef]
- Dixon, G.; Bullock, O.; Adams, D. Unintended effects of emphasizing the role of climate change in recent natural disasters. Environ. Commun. 2019, 13, 135–143. [Google Scholar] [CrossRef]
- Druckman, J.N.; McGrath, M.C. The evidence for motivated reasoning in climate change preference formation. Nat. Clim. Change 2019, 9, 111–119. [Google Scholar] [CrossRef]
- Van der Linden, S.; Dixon, G.; Clarke, C.; Cook, J. Inoculating against COVID-19 vaccine misinformation. EClinicalMedicine 2021, 33, 100772. [Google Scholar] [CrossRef] [PubMed]
- Horne, Z.; Powell, D.; Hummel, J.E.; Holyoak, K.J. Countering antivaccination attitudes. Proc. Natl. Acad. Sci. USA 2015, 112, 10321–10324. [Google Scholar] [CrossRef] [PubMed]
- Nyhan, B.; Reifler, J. Does correcting myths about the flu vaccine work? An experimental evaluation of the effects of corrective information. Vaccine 2015, 33, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; Arndt, J.; Lieberman, J.D. Firing back at the backfire effect: The influence of mortality salience and nullification beliefs on reactions to inadmissible evidence. Law Hum. Behav. 2004, 28, 389–410. [Google Scholar] [CrossRef]
- Chen, X.; Tsaparas, P.; Lijffijt, J.; De Bie, T. Opinion dynamics with backfire effect and biased assimilation. PLoS ONE 2021, 16, e0256922. [Google Scholar] [CrossRef]
- Hamilton, L.C.; Hartter, J.; Saito, K. Trust in scientists on climate change and vaccines. Sage Open 2015, 5, 2158244015602752. [Google Scholar] [CrossRef]
- Kinder, D.R.; Winter, N. Exploring the racial divide: Blacks, whites, and opinion on national policy. Am. J. Pol. Sci. 2001, 45, 439–456. [Google Scholar] [CrossRef]
- Lawrence, R.G. The Politics of Force: Media and the Construction of Police Brutality; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Hanson, G.H. Why Does Immigration Divide America? Peterson Institute: Washington, DC, USA, 2005. [Google Scholar]
- Maksymov, I.S. Magnetism-inspired quantum-mechanical model of gender hluidity. Psychol. J. Res. Open. 2024, 6, 1–7. [Google Scholar]
- Tatalovich, R.; Daynes, B.W.; Lowi, T.J. Moral Controversies in American Politics; Routledge: London, UK, 2014. [Google Scholar]
- Abedin, B. Managing the tension between opposing effects of explainability of artificial intelligence: A contingency theory perspective. Internet Res. 2022, 32, 425–453. [Google Scholar] [CrossRef]
- Urban, D.; Pfenning, U. Attitudes towards genetic engineering between change and stability: Results of a panel study. New Genet. Soc. 2000, 19, 251–268. [Google Scholar] [CrossRef]
- Montalvo, J.G.; Reynal-Querol, M. Religious polarization and economic development. Econ. Lett. 2003, 80, 201–210. [Google Scholar] [CrossRef]
- Vicario, M.D.; Quattrociocchi, W.; Scala, A.; Zollo, F. Polarization and fake news: Early warning of potential misinformation targets. ACM Trans. Web. 2019, 13, 1–22. [Google Scholar] [CrossRef]
- Oswald, M.E.; Grosjean, S. Confirmation Bias; Psychology Press: New York, NY, USA, 2004. [Google Scholar]
- Nyhan, B.; Reifler, J.; Ubel, P.A. The hazards of correcting myths about health care reform. Med. Care 2013, 51, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Nyhan, B.; Reifler, J.; Richey, S.; Freed, G.L. Effective messages in vaccine promotion: A randomized trial. Pediatrics 2014, 133, e835–e842. [Google Scholar] [CrossRef] [PubMed]
- Cameron, K.A.; Roloff, M.E.; Friesema, E.M.; Brown, T.; Jovanovic, B.D.; Hauber, S.; Baker, D.W. Patient knowledge and recall of health information following exposure to “facts and myths” message format variations. Patient Educ. Couns. 2013, 92, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Thorson, E. Belief echoes: The persistent effects of corrected misinformation. Polit. Commun. 2016, 33, 460–480. [Google Scholar] [CrossRef]
- Chan, M.p.S.; Jones, C.R.; Hall Jamieson, K.; Albarracín, D. Debunking: A meta-analysis of the psychological efficacy of messages countering misinformation. Psychol. Sci. 2017, 28, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Swire-Thompson, B.; DeGutis, J.; Lazer, D. Searching for the backfire effect: Measurement and design considerations. J. Appl. Res. Mem. Cogn. 2020, 9, 286–299. [Google Scholar] [CrossRef]
- Porter, E.; Velez, Y.; Wood, T.J. Correcting COVID-19 vaccine misinformation in 10 countries. R. Soc. Open Sci. 2023, 10, 221097. [Google Scholar] [CrossRef]
- Ecker, U.K.; Lewandowsky, S.; Cook, J.; Schmid, P.; Fazio, L.K.; Brashier, N.; Kendeou, P.; Vraga, E.K.; Amazeen, M.A. The psychological drivers of misinformation belief and its resistance to correction. Nat. Rev. Psychol. 2022, 1, 13–29. [Google Scholar] [CrossRef]
- Messiah, A. Quantum Mechanics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Khrennikov, A. Quantum-like brain: “Interference of minds”. Biosystems 2006, 84, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Mindell, A. Quantum Mind: The Edge between Physics and Psychology; Deep Democracy Exchange: Portland, OR, USA, 2012. [Google Scholar]
- Khrennikova, P. A Quantum Framework for ‘Sour Grapes’ in Cognitive Dissonance. In Quantum Interaction, Proceedings of the International Symposium on Quantum Interaction, Leicester, UK, 25–27 July 2013; Atmanspacher, H., Haven, E., Kitto, K., Raine, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 270–280. [Google Scholar]
- Allahverdyan, A.E.; Galstyan, A. Opinion dynamics with confirmation bias. PLoS ONE 2014, 9, e99557. [Google Scholar] [CrossRef] [PubMed]
- Gronchi, G.; Strambini, E. Quantum cognition and Bell’s inequality: A model for probabilistic judgment bias. J. Math. Psychol. 2017, 78, 65–75. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, X.Q.; Wang, Y.L.; Liu, B.H.; Shadbolt, P.; Zhang, Y.S.; Gao, H.; Li, F.L.; O’Brien, J.L. Quantum gambling based on Nash-equilibrium. NPJ Quantum Inf. 2017, 3, 24. [Google Scholar] [CrossRef]
- Chen, K.Y.; Hogg, T. How well do people play a quantum Prisoner’s Dilemma? Quantum Inf. Process. 2006, 5, 43–67. [Google Scholar] [CrossRef]
- Galam, S. Heterogeneous beliefs, segregation, and extremism in the making of public opinions. Phys. Rev. E 2005, 71, 046123. [Google Scholar] [CrossRef] [PubMed]
- Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591–646. [Google Scholar] [CrossRef]
- Hu, H. Competing opinion diffusion on social networks. R. Soc. Open Sci. 2017, 4, 171160. [Google Scholar] [CrossRef]
- Eyre, R.W.; House, T.; Hill, E.M.; Griffiths, F.E. Spreading of components of mood in adolescent social networks. R. Soc. Open Sci. 2023, 4, 170336. [Google Scholar] [CrossRef]
- Vicario, M.D.; Scala, A.; Caldarelli, G.; Stanley, H.E.; Quattrociocchi, W. Modeling confirmation bias and polarization. Sci. Rep. 2017, 7, 40391. [Google Scholar] [CrossRef]
- Redner, S. Reality-inspired voter models: A mini-review. C. R. Phys. 2019, 20, 275–292. [Google Scholar] [CrossRef]
- Belcastro, L.; Cantini, R.; Marozzo, F.; Talia, D.; Trunfio, P. Learning political polarization on social media using neural networks. IEEE Access 2020, 8, 47177–47187. [Google Scholar] [CrossRef]
- Tokita, C.K.; Guess, A.M.; Tarnita, C.E. Polarized information ecosystems can reorganize social networks via information cascadesi. Proc. Natl. Acad. Sci. USA 2021, 118, e2102147118. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, M.; Morales, G.D.F.; Galeazzi, A.; Quattrociocchi, W.; Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci. USA 2021, 118, e2023301118. [Google Scholar] [CrossRef] [PubMed]
- Galam, S.; Brooks, R.R.W. Radicalism: The asymmetric stances of radicals versus conventionals. Phys. Rev. E 2022, 105, 044112. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, M.; Devriendt, K.; Coscia, M. Quantifying ideological polarization on a network using generalized Euclidean distance. Sci. Adv. 2023, 9, eabq2044. [Google Scholar] [CrossRef] [PubMed]
- Interian, R.; Rodrigues, F.A. Group polarization, influence, and domination in online interaction networks: A case study of the 2022 Brazilian elections. J. Phys. Complex. 2023, 4, 035008. [Google Scholar] [CrossRef]
- Kernell, G.; Lamberson, P.J. Social networks and voter turnout. R. Soc. Open Sci. 2023, 10, 230704. [Google Scholar] [CrossRef]
- Capraro, V.; Perc, M. Mathematical foundations of moral preferences. J. R. Soc. Interface. 2021, 18, 20200880. [Google Scholar] [CrossRef]
- Axelrod, R.; Daymude, J.J.; Forrest, S. Preventing extreme polarization of political attitudes. Proc. Natl. Acad. Sci. USA 2021, 118, e2102139118. [Google Scholar] [CrossRef]
- Aerts, D.; Arguëlles, J.A. Human perception as a phenomenon of quantization. Entropy 2022, 24, 1207. [Google Scholar] [CrossRef] [PubMed]
- Aerts, D.; Beltran, L. A Planck radiation and quantization scheme for human cognition and language. Front. Psychol. 2022, 13, 850725. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics; John Wiley and Sons: New York, NY, USA, 1971. [Google Scholar]
- Axelrod, R. The dissemination of culture: A model with local convergence and global polarization. J. Conflict Resolut. 1997, 41, 203–226. [Google Scholar] [CrossRef]
- Sznajd-Weron, K.; Sznajd, J. Opinion evolution in closed community. Int. J. Mod. Phys. C 2000, 11, 1157–1165. [Google Scholar] [CrossRef]
- Rouder, J.N.; Morey, R.D. The Nature of Psychological Thresholds. Psychol. Rev. 2009, 116, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Khrennikov, A.; Basieva, I.; Pothos, E.M.; Yamato, I. Quantum probability in decision making from quantum information representation of neuronal states. Sci. Rep. 2018, 8, 16225. [Google Scholar] [CrossRef]
- Lin, C.; Thornton, M. Evidence for bidirectional causation between trait and mental state inferences. J. Exp. Soc. Psychol. 2023, 108, 104495. [Google Scholar] [CrossRef]
- Toyabe, S.; Sagawa, T.; Ueda, M.; Muneyuki, E.; Sano, M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 2010, 6, 988–992. [Google Scholar] [CrossRef]
- Dittrich, T. ‘The concept of information in physics’: An interdisciplinary topical lecture. Eur. J. Phys. 2014, 36, 015010. [Google Scholar] [CrossRef]
- Vopson, M.M. The mass-energy-information equivalence principle. AIP Adv. 2019, 9, 095206. [Google Scholar] [CrossRef]
- Usó-Doménech, J.L.; Nescolarde-Selva, J. What are belief systems? Found. Sci. 2016, 21, 147–152. [Google Scholar] [CrossRef]
- DeGroot, M.H. Reaching a consensus. J. Am. Stat. Assoc. 1974, 69, 118–121. [Google Scholar] [CrossRef]
- Ortega y Gasset, J. Obras Completas; Revista de Occidente: Madrid, Spain, 1966; Volume I. [Google Scholar]
- Castro, A.D. On the quantum principles of cognitive learning. Behav. Brain Sci. 2013, 36, 281–282. [Google Scholar] [CrossRef] [PubMed]
- Maksymov, I.S. Quantum-inspired neural network model of optical illusions. Algorithms 2024, 17, 30. [Google Scholar] [CrossRef]
- Einstein, A. Relativität und Gravitation. Erwiderung auf eine Bemerkung von M. Abraham. Ann. Der Phys. 1912, 343, 1059–1064. [Google Scholar] [CrossRef]
- Kragh, H. Niels Bohr’s second atomic theory. Hist. Stud. Phys. Sci. 1979, 10, 123–186. [Google Scholar] [CrossRef]
- Kuipers, T.A.F. Models, postulates, and generalized nomic truth approximation. Synthese 2016, 193, 3057–3077. [Google Scholar] [CrossRef]
- Guerra, P.; Meira, W., Jr.; Cardie, C.; Kleinberg, R. A Measure of Polarization on Social Media Networks Based on Community Boundaries. In Proceedings of the International AAAI Conference on Web and Social Media, Online, 7–10 June 2021; Volume 7, pp. 215–224. [Google Scholar] [CrossRef]
- Rollwage, M.; Loosen, A.; Hauser, T.U.; Moran, R.; Dolan, R.J.; Fleming, S.M. Confidence drives a neural confirmation bias. Nat. Commun. 2020, 11, 2634. [Google Scholar] [CrossRef]
- Moritz, S.; Klein, J.P.; Lysaker, P.H.; Mehl, S. Metacognitive and cognitive-behavioral interventions for psychosis: New developments. Dialogues Clin. Neurosci. 2019, 21, 309–317. [Google Scholar] [CrossRef]
- Adriaans, P.; van Benthem, J. Handbook of Philosophy of Information; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Goss, N.; Morvan, A.; Marinelli, B.; Mitchell, B.K.; Nguyen, L.B.; Naik, R.K.; Chen, L.; Jünger, C.; Kreikebaum, J.M.; Santiago, D.I.; et al. High-fidelity qutrit entangling gates for superconducting circuits. Nat. Commun. 2022, 13, 7481. [Google Scholar] [CrossRef]
- Halpern, A.M.; Ge, Y.; Glendening, E.D. Visualizing solutions of the one-dimensional Schrödinger equation using a finite difference method. J. Chem. Educ. 2022, 99, 3053–3060. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Boston, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 19 March 2024).
- Maksymov, I.S. Modelling of Photonic Components Based on χ(3) Nonlinear Photonic Crystals. Ph.D. Thesis, Rovira i Virgili University, Taggagona, Spain, 2006. [Google Scholar]
- Ortega, P.A.; Braun, D.A. Thermodynamics as a theory of decision-making with information-processing costs. Proc. R. Soc. A 2013, 469, 20120683. [Google Scholar] [CrossRef]
- Pakhomov, A.; Sudin, N. Thermodynamic view on decision-making process: Emotions as a potential power vector of realization of the choice. Cogn. Neurodyn. 2013, 7, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Rose-Redwood, R.; Kitchin, R.; Rickards, L.; Rossi, U.; Datta, A.; Crampton, J. The possibilities and limits to dialogue. Dialogues Hum. Geogr. 2018, 8, 109–123. [Google Scholar] [CrossRef]
- Putnam, H. Philosophy as Dialogue; Harvard University Press: Cambridge, MA, USA; London, UK, 2022. [Google Scholar] [CrossRef]
- Kovbasyuk, O. Dialogue as a means of change. Intl. HETL Rev. 2011, 1, 2. [Google Scholar]
- Larcinese, V.; Snyder, J.M.; Testa, C. Testing models of distributive politics using exit polls to measure voters’ preferences and partisanship. Br. J. Political Sci. 2013, 43, 845–875. [Google Scholar] [CrossRef]
- Jovanovic, D.; Leeuwen, T.V. Multimodal dialogue on social media. Soc. Semiot. 2018, 28, 683–699. [Google Scholar] [CrossRef]
- Ricaud, B.; Borgnat, P.; Tremblay, N.; Gonçalves, P.; Vandergheynst, P. Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs. C. R. Phys. 2019, 20, 474–488. [Google Scholar] [CrossRef]
- Baszuro, P.; Swacha, J. Graph analysis using fast Fourier transform applied on grayscale bitmap images. Information 2021, 12, 454. [Google Scholar] [CrossRef]
- Mcculloh, I.A.; Johnson, A.N.; Carley, K.M. Spectral analysis of social networks to identify periodicity. J. Math. Sociol. 2012, 36, 80–96. [Google Scholar] [CrossRef]
- Vasudevan, R.K.; Belianinov, A.; Gianfrancesco, A.G.; Baddorf, A.P.; Tselev, A.; Kalinin, S.V.; Jesse, S. Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity. Appl. Phys. Lett. 2015, 106, 091601. [Google Scholar] [CrossRef]
- Parrillo, V.N.; Donoghue, C. Updating the Bogardus social distance studies: A new national survey. Soc. Sci. J. 2005, 42, 257–271. [Google Scholar] [CrossRef]
- Antonopoulos, C.G.; Shang, Y. Opinion formation in multiplex networks with general initial distributions. Sci. Rep. 2018, 8, 2852. [Google Scholar] [CrossRef] [PubMed]
- Kuikka, V. Opinion Formation on social networks—The effects of recurrent and circular influence. Computation 2023, 11, 103. [Google Scholar] [CrossRef]
- Nugent, A.; Gomes, S.N.; Wolfram, M.T. On evolving network models and their influence on opinion formation. Phys. D 2023, 456, 133914. [Google Scholar] [CrossRef]
- Vannucci, A.; Ohannessian, C.M. Social media use bubgroups differentially predict psychosocial well-being during early adolescence. J. Youth Adolesc. 2019, 48, 1469–1493. [Google Scholar] [CrossRef] [PubMed]
- Imbens, G.; Rubin, D. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Jusup, M.; Holme, P.; Kanazawa, K.; Takayasu, M.; Romić, I.; Wang, Z.; Geček, S.; Lipić, T.; Podobnik, B.; Wang, L.; et al. Social physics. Phys. Rep. 2022, 948, 1–148. [Google Scholar] [CrossRef]
- Galam, S. Physicists, non physical topics, and interdisciplinarity. Front. Phys. 2022, 10, 986782. [Google Scholar] [CrossRef]
- Galam, S. The Trump phenomenon: An explanation from sociophysics. Int. J. Mod. Phys. B 2017, 31, 1742015. [Google Scholar] [CrossRef]
- Galam, S. Unavowed abstention can overturn poll predictions. Front. Phys. 2018, 7, 339894. [Google Scholar] [CrossRef]
- Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Pothos, E.M.; Busemeyer, J.R. A quantum probability explanation for violations of ‘rational’ decision theory. Proc. R. Soc. B 2009, 276, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Benedek, G.; Caglioti, G. Graphics and Quantum Mechanics–The Necker Cube as a Quantum-like Two-Level System. In ICGG 2018, Proceedings of the 18th International Conference on Geometry and Graphics, Milan, Italy, 3–7 August 2018; Cocchiarella, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 161–172. [Google Scholar]
- Pothos, E.M.; Busemeyer, J.R. Quantum Cognition. Annu. Rev. Psychol. 2022, 73, 749–778. [Google Scholar] [CrossRef] [PubMed]
- Atmanspacher, H.; Filk, T. A proposed test of temporal nonlocality in bistable perception. J. Math. Psychol. 2010, 54, 314–321. [Google Scholar] [CrossRef]
- Baaquie, B.E. Mathematical Methods and Quantum Mathematics for Economics and Finance; Springer: Singapore, 2020. [Google Scholar]
- Herman, D.; Googin, C.; Liu, X.; Sun, Y.; Galda, A.; Safro, I.; Pistoia, M.; Alexeev, Y. Quantum computing for finance. Nat. Rev. Phys. 2023, 5, 450–465. [Google Scholar] [CrossRef]
- Northcott, A. The Complete Guide to Using Candlestick Charting: How to Earn High Rates of Return—Safely; Atlantic Publishing Group: Ocala, FL, USA, 2009. [Google Scholar]
- Pedersen, L.H. Game on: Social networks and markets. J. Financ. Econ. 2022, 146, 1097–1119. [Google Scholar] [CrossRef]
- Hirshleifer, D.; Peng, L.; Wang, Q. News Diffusion in Social Networks and Stock Market Reactions; Working Paper of National Bureau of Economic Research; National Bureau of Economic Research: Cambridge, MA, USA, 2023. [Google Scholar] [CrossRef]
- Fabretti, A. A dynamical model for financial market: Among common market strategies who and how moves the price to fluctuate, inflate, and burst? Mathematics 2022, 10, 679. [Google Scholar] [CrossRef]
- McKenna, T.M.; McMullen, T.A.; Shlesinger, M.F. The brain as a dynamic physical system. Neuroscience 1994, 60, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Korn, H.; Faure, P. Is there chaos in the brain? II. Experimental evidence and related models. Comptes Rendus Biol. 2003, 326, 787–840. [Google Scholar] [CrossRef]
- Garcia, M.M.; Machado Pereira, A.C.; Acebal, J.L.; Bosco de Magalhães, A.R. Forecast model for financial time series: An approach based on harmonic oscillators. Phys. A 2020, 549, 124365. [Google Scholar] [CrossRef]
- Ahn, K.; Choi, M.Y.; Dai, B.; Sohn, S.; Yang, B. Modeling stock return distributions with a quantum harmonic oscillator. Europhys. Lett. (EPL) 2018, 120, 38003. [Google Scholar] [CrossRef]
- Shiratori, H.; Shinkawa, H.; Röhm, A.; Chauvet, N.; Segawa, E.; Laurent, J.; Bachelier, G.; Yamagami, T.; Horisaki, R.; Naruse, M. Asymmetric quantum decision-making. Sci. Rep. 2023, 13, 14636. [Google Scholar] [CrossRef] [PubMed]
- Maksymov, I.S.; Pogrebna, G. The Physics of Preference: Unravelling Imprecision of Human Preferences through Magnetisation Dynamics. arXiv 2023, arXiv:2310.00267. [Google Scholar]
- Christensen, T.; Loh, C.; Picek, S.; Jakobović, D.; Jing, L.; Fisher, S.; Ceperic, V.; Joannopoulos, J.D.; Soljačić, M. Predictive and generative machine learning models for photonic crystals. Nanophotonics 2020, 9, 4183–4192. [Google Scholar] [CrossRef]
- Orabi, M.; Mouheb, D.; Al Aghbari, Z.; Kamel, I. Detection of bots in cocial media: A systematic review. Inf. Process. Manag. 2020, 57, 102250. [Google Scholar] [CrossRef]
- Hayawi, K.; Saha, S.; Masud, M.M.; Mathew, S.S.; Kaosar, M. Social media bot detection with deep learning methods: A systematic review. Neural Comput. Appl. 2023, 35, 8903–8918. [Google Scholar] [CrossRef]
- Foster, C.; Efthymiou, T. Operational Optimisation: Decision-Making Beyond Human Capability. In KPMG Report; KPMG: Melbourne, Australia, 2022; pp. 1–25. Available online: https://kpmg.com/au/en/home/insights/2023/09/operational-optimisation-decision-making-with-ai.html (accessed on 19 March 2024).
- Taddeo, M. On the risks of relying on analogies to understand cyber conflicts. Minds Mach. 2016, 26, 317–321. [Google Scholar] [CrossRef]
- Rashkovskiy, S.A. ‘Bosons’ and ‘fermions’ in social and economic systems. Phys. A 2019, 514, 90–104. [Google Scholar] [CrossRef]
- Martinez-Perdiguero, J. Fermion-like behavior of elements/agents in their spatial distribution around points of interest. Phys. A 2020, 557, 124905. [Google Scholar] [CrossRef]
- Tung, W.K. Group Theory in Physics; World Scientific: Singapore, 1985. [Google Scholar]
- Miyazawa, H. Superalgebra and fermion-boson symmetry. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 158–164. [Google Scholar] [CrossRef]
- Taie, S.; Ibarra-García-Padilla, E.; Nishizawa, N.; Takasu, Y.; Kuno, Y.; Wei, H.T.; Scalettar, R.T.; Hazzard, K.R.A.; Takahashi, Y. Observation of antiferromagnetic correlations in an ultracold SU(N) Hubbard model. Nat. Phys. 2022, 18, 1356–1361. [Google Scholar] [CrossRef]
- Sonderhouse, L.; Sanner, C.; Hutson, R.B.; Goban, A.; Bilitewski, T.; Yan, L.; Milner, W.R.; Rey, A.M.; Ye, J. Thermodynamics of a deeply degenerate SU(N)–symmetric Fermi gas. Nat. Phys. 2020, 16, 1216–1221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksymov, I.S.; Pogrebna, G. Quantum-Mechanical Modelling of Asymmetric Opinion Polarisation in Social Networks. Information 2024, 15, 170. https://doi.org/10.3390/info15030170
Maksymov IS, Pogrebna G. Quantum-Mechanical Modelling of Asymmetric Opinion Polarisation in Social Networks. Information. 2024; 15(3):170. https://doi.org/10.3390/info15030170
Chicago/Turabian StyleMaksymov, Ivan S., and Ganna Pogrebna. 2024. "Quantum-Mechanical Modelling of Asymmetric Opinion Polarisation in Social Networks" Information 15, no. 3: 170. https://doi.org/10.3390/info15030170
APA StyleMaksymov, I. S., & Pogrebna, G. (2024). Quantum-Mechanical Modelling of Asymmetric Opinion Polarisation in Social Networks. Information, 15(3), 170. https://doi.org/10.3390/info15030170