Compressive Sensing in Image/Video Compression: Sampling, Coding, Reconstruction, and Codec Optimization
Abstract
:1. Introduction
- This review emphasizes various sampling techniques, with a focus on designing measurement matrices for superior reconstruction and efficient coding.
- We explore the intricacies of measurement coding, covering approaches like intra prediction, inter prediction, and rate control.
- We provide a comprehensive analysis of CS codec optimization, including diverse reconstruction algorithms, and discuss current challenges and future prospects.
2. Compressive Sensing Overview
3. Sampling Algorithms
3.1. Measurement Matrix for Better Reconstructions
3.1.1. Conventional Measurement Matrix
3.1.2. Learning-Based Measurement Matrix
3.2. Measurement Matrix for Better Measurement Coding
4. Measurement Coding
4.1. Measurement Intra Prediction
4.2. Measurement Inter Coding
4.3. Rate Control
5. Reconstruction Approaches
5.1. Conventional Reconstruction Methods
5.2. Deep Learning-Based Reconstruction Methods
6. Codec Optimization of CS
6.1. Scalable and Adaptive Sampling-Reconstruction
6.1.1. Scalable Sampling-Reconstruction
6.1.2. Adaptive Sampling-Reconstruction
6.2. Pre-Calculation-Based CS Codec
6.3. Down-Sampling Coding-Based CS Codec
7. Challenges and Future Scope
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Por, E.; van Kooten, M.; Sarkovic, V. Nyquist–Shannon Sampling Theorem; Leiden University: Leiden, The Netherlands, 2019; Volume 1. [Google Scholar]
- Arildsen, T.; Oxvig, C.S.; Pedersen, P.S.; Østergaard, J.; Larsen, T. Reconstruction algorithms in undersampled AFM imaging. IEEE J. Sel. Top. Signal Process. 2015, 10, 31–46. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Yuan, Y.; Huang, B. Applications of atomic force microscopy in immunology. Front. Med. 2021, 15, 43–52. [Google Scholar] [CrossRef]
- Lerner, B.E.; Flores-Garibay, A.; Lawrie, B.J.; Maksymovych, P. Compressed sensing for scanning tunnel microscopy imaging of defects and disorder. Phys. Rev. Res. 2021, 3, 043040. [Google Scholar] [CrossRef]
- Otazo, R.; Candes, E.; Sodickson, D.K. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn. Reson. Med. 2015, 73, 1125–1136. [Google Scholar] [CrossRef]
- Quan, T.M.; Nguyen-Duc, T.; Jeong, W.K. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans. Med. Imaging 2018, 37, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.M.; Yan, Y.; Wang, S.; Xu, Y.; Shao, L.; Fu, H. Specificity-preserving federated learning for MR image reconstruction. IEEE Trans. Med. Imaging 2022, 42, 2010–2021. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, M.; Qiu, C.W.; Li, J.; Sheng, J.; Li, Y.; Bao, Z. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3824–3838. [Google Scholar] [CrossRef]
- Giusti, E.; Cataldo, D.; Bacci, A.; Tomei, S.; Martorella, M. ISAR image resolution enhancement: Compressive sensing versus state-of-the-art super-resolution techniques. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1983–1997. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Wen, C.; Li, J.; Xia, X.G.; Hong, W. An efficient radio frequency interference mitigation algorithm in real synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Priya, G.; Ghosh, D. An Effectual Video Compression Scheme for WVSNs Based on Block Compressive Sensing. IEEE Trans. Netw. Sci. Eng. 2023. [Google Scholar] [CrossRef]
- Rajpoot, P.; Dwivedi, P. Optimized and load balanced clustering for wireless sensor networks to increase the lifetime of WSN using MADM approaches. Wirel. Netw. 2020, 26, 215–251. [Google Scholar] [CrossRef]
- Okada, H.; Suzaki, S.; Kato, T.; Kobayashi, K.; Katayama, M. Link quality information sharing by compressed sensing and compressed transmission for arbitrary topology wireless mesh networks. IEICE Trans. Commun. 2017, 100, 456–464. [Google Scholar] [CrossRef]
- Rao, P.S.; Jana, P.K.; Banka, H. A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wirel. Netw. 2017, 23, 2005–2020. [Google Scholar] [CrossRef]
- Ali, I.; Ahmedy, I.; Gani, A.; Munir, M.U.; Anisi, M.H. Data collection in studies on Internet of things (IoT), wireless sensor networks (WSNs), and sensor cloud (SC): Similarities and differences. IEEE Access 2022, 10, 33909–33931. [Google Scholar] [CrossRef]
- Gai, K.; Qiu, M. Optimal resource allocation using reinforcement learning for IoT content-centric services. Appl. Soft Comput. 2018, 70, 12–21. [Google Scholar] [CrossRef]
- Garcia, N.; Wymeersch, H.; Larsson, E.G.; Haimovich, A.M.; Coulon, M. Direct localization for massive MIMO. IEEE Trans. Signal Process. 2017, 65, 2475–2487. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO is a reality—What is next?: Five promising research directions for antenna arrays. Digit. Signal Process. 2019, 94, 3–20. [Google Scholar] [CrossRef]
- Guo, J.; Wen, C.K.; Jin, S.; Li, G.Y. Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis. IEEE Trans. Wirel. Commun. 2020, 19, 2827–2840. [Google Scholar] [CrossRef]
- Nagesh, P.; Li, B. A compressive sensing approach for expression-invariant face recognition. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1518–1525. [Google Scholar]
- Andrés, A.M.; Padovani, S.; Tepper, M.; Jacobo-Berlles, J. Face recognition on partially occluded images using compressed sensing. Pattern Recognit. Lett. 2014, 36, 235–242. [Google Scholar] [CrossRef]
- Jaber, A.K.; Abdel-Qader, I. Hybrid Histograms of Oriented Gradients-compressive sensing framework feature extraction for face recognition. In Proceedings of the 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, USA, 19–21 May 2016; pp. 442–447. [Google Scholar]
- Akl, A.; Feng, C.; Valaee, S. A novel accelerometer-based gesture recognition system. IEEE Trans. Signal Process. 2011, 59, 6197–6205. [Google Scholar] [CrossRef]
- Wang, Z.W.; Vineet, V.; Pittaluga, F.; Sinha, S.N.; Cossairt, O.; Bing Kang, S. Privacy-preserving action recognition using coded aperture videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Zhuang, H.; Yang, M.; Cui, Z.; Zheng, Q. A method for static hand gesture recognition based on non-negative matrix factorization and compressive sensing. IAENG Int. J. Comput. Sci. 2017, 44, 52–59. [Google Scholar]
- Sivapalan, S.; Rana, R.K.; Chen, D.; Sridharan, S.; Denmon, S.; Fookes, C. Compressive sensing for gait recognition. In Proceedings of the 2011 International Conference on Digital Image Computing: Techniques and Applications, Noosa, QLD, Australia, 6–8 December 2011; pp. 567–571. [Google Scholar]
- Pant, J.K.; Krishnan, S. Compressive sensing of foot gait signals and its application for the estimation of clinically relevant time series. IEEE Trans. Biomed. Eng. 2015, 63, 1401–1415. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, H. An advanced scheme of compressed sensing of acceleration data for telemonintoring of human gait. Biomed. Eng. Online 2016, 15, 27. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Torii, A.; Okutomi, M.; Taniguchi, R.i.; Nagahara, H.; Yagi, Y. Deep Sensing for Compressive Video Acquisition. Sensors 2023, 23, 7535. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ma, S.; Zhang, J.; Xiong, R.; Gao, W. Video compressive sensing reconstruction via reweighted residual sparsity. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 1182–1195. [Google Scholar] [CrossRef]
- Shi, W.; Liu, S.; Jiang, F.; Zhao, D. Video compressed sensing using a convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 425–438. [Google Scholar] [CrossRef]
- Veeraraghavan, A.; Reddy, D.; Raskar, R. Coded strobing photography: Compressive sensing of high speed periodic videos. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 671–686. [Google Scholar] [CrossRef]
- Martel, J.N.; Mueller, L.K.; Carey, S.J.; Dudek, P.; Wetzstein, G. Neural sensors: Learning pixel exposures for HDR imaging and video compressive sensing with programmable sensors. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1642–1653. [Google Scholar] [CrossRef]
- Dong, D.; Rui, G.; Tian, W.; Liu, G.; Zhang, H. A Multi-Task Bayesian Algorithm for online Compressed Sensing of Streaming Signals. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–5. [Google Scholar]
- Edgar, M.P.; Sun, M.J.; Gibson, G.M.; Spalding, G.C.; Phillips, D.B.; Padgett, M.J. Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera. In Proceedings of the Optical Trapping and Optical Micromanipulation XIII, San Diego, CA, USA, 28 August–1 September 2016; Volume 9922, pp. 171–178. [Google Scholar]
- Edgar, M.; Johnson, S.; Phillips, D.; Padgett, M. Real-time computational photon-counting LiDAR. Opt. Eng. 2018, 57, 031304. [Google Scholar] [CrossRef]
- Musarra, G.; Lyons, A.; Conca, E.; Villa, F.; Zappa, F.; Altmann, Y.; Faccio, D. 3D RGB non-line-of-sight single-pixel imaging. In Proceedings of the Imaging Systems and Applications, Munich, Germany, 24–27 June 2019; p. IM2B–5. [Google Scholar]
- Song, J.; Mou, C.; Wang, S.; Ma, S.; Zhang, J. Optimization-Inspired Cross-Attention Transformer for Compressive Sensing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 6174–6184. [Google Scholar]
- Candes, E.J.; Plan, Y. A probabilistic and RIPless theory of compressed sensing. IEEE Trans. Inf. Theory 2011, 57, 7235–7254. [Google Scholar] [CrossRef]
- Foucart, S.; Rauhut, H.; Foucart, S.; Rauhut, H. An Invitation to Compressive Sensing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Nguyen, T.L.N.; Shin, Y. Deterministic sensing matrices in compressive sensing: A survey. Sci. World J. 2013, 2013, 192795. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wen, G.; Wang, Z.; Yang, Y. Efficient and secure image communication system based on compressed sensing for IoT monitoring applications. IEEE Trans. Multimed. 2019, 22, 82–95. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, D.; Guo, L.; Yoshimura, T.; Goto, S. Framework and vlsi architecture of measurement-domain intra prediction for compressively sensed visual contents. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2017, 100, 2869–2877. [Google Scholar] [CrossRef]
- Yu, N.Y. Indistinguishability and energy sensitivity of Gaussian and Bernoulli compressed encryption. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1722–1735. [Google Scholar] [CrossRef]
- Moshtaghpour, A.; Bioucas-Dias, J.M.; Jacques, L. Close encounters of the binary kind: Signal reconstruction guarantees for compressive Hadamard sampling with Haar wavelet basis. IEEE Trans. Inf. Theory 2020, 66, 7253–7273. [Google Scholar] [CrossRef]
- Zhuoran, C.; Honglin, Z.; Min, J.; Gang, W.; Jingshi, S. An improved Hadamard measurement matrix based on Walsh code for compressive sensing. In Proceedings of the 2013 9th International Conference on Information, Communications & Signal Processing, Tainan, Taiwan, 10–13 December 2013; pp. 1–4. [Google Scholar]
- Rauhut, H. Circulant and Toeplitz matrices in compressed sensing. arXiv 2009, arXiv:0902.4394. [Google Scholar]
- Boyer, C.; Bigot, J.; Weiss, P. Compressed sensing with structured sparsity and structured acquisition. Appl. Comput. Harmon. Anal. 2019, 46, 312–350. [Google Scholar] [CrossRef]
- Sun, M.J.; Meng, L.T.; Edgar, M.P.; Padgett, M.J.; Radwell, N. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging. Sci. Rep. 2017, 7, 3464. [Google Scholar] [CrossRef]
- Yu, W.K. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort. Sensors 2019, 19, 4122. [Google Scholar] [CrossRef]
- Yu, W.K.; Liu, Y.M. Single-pixel imaging with origami pattern construction. Sensors 2019, 19, 5135. [Google Scholar] [CrossRef]
- López-García, L.; Cruz-Santos, W.; García-Arellano, A.; Filio-Aguilar, P.; Cisneros-Martínez, J.A.; Ramos-García, R. Efficient ordering of the Hadamard basis for single pixel imaging. Opt. Express 2022, 30, 13714–13732. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, J.; Peetakul, J.; Zhou, J. Zigzag Ordered Walsh Matrix for Compressed Sensing Image Sensor. In Proceedings of the 2023 Data Compression Conference (DCC), Snowbird, UT, USA, 21–24 March 2023; p. 346. [Google Scholar]
- Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. Reconnet: Non-iterative reconstruction of images from compressively sensed measurements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 449–458. [Google Scholar]
- Shi, W.; Jiang, F.; Liu, S.; Zhao, D. Image compressed sensing using convolutional neural network. IEEE Trans. Image Process. 2019, 29, 375–388. [Google Scholar] [CrossRef]
- Du, J.; Xie, X.; Wang, C.; Shi, G.; Xu, X.; Wang, Y. Fully convolutional measurement network for compressive sensing image reconstruction. Neurocomputing 2019, 328, 105–112. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Liu, J.; Wen, F.; Zhu, C. AMP-Net: Denoising-based deep unfolding for compressive image sensing. IEEE Trans. Image Process. 2020, 30, 1487–1500. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, C.; Gao, W. Optimization-inspired compact deep compressive sensing. IEEE J. Sel. Top. Signal Process. 2020, 14, 765–774. [Google Scholar] [CrossRef]
- Zhou, S.; He, Y.; Liu, Y.; Li, C.; Zhang, J. Multi-channel deep networks for block-based image compressive sensing. IEEE Trans. Multimed. 2020, 23, 2627–2640. [Google Scholar] [CrossRef]
- Song, J.; Chen, B.; Zhang, J. Memory-augmented deep unfolding network for compressive sensing. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, 20–24 October 2021; pp. 4249–4258. [Google Scholar]
- Gao, X.; Zhang, J.; Che, W.; Fan, X.; Zhao, D. Block-based compressive sensing coding of natural images by local structural measurement matrix. In Proceedings of the 2015 Data Compression Conference, Snowbird, UT, USA, 7–9 April 2015; pp. 133–142. [Google Scholar]
- Wan, R.; Zhou, J.; Huang, B.; Zeng, H.; Fan, Y. Measurement Coding Framework with Adjacent Pixels Based Measurement Matrix for Compressively Sensed Images. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 1435–1439. [Google Scholar]
- Zhou, J.; Zhou, D.; Guo, L.; Takeshi, Y.; Goto, S. Measurement-domain intra prediction framework for compressively sensed images. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar]
- Peetakul, J.; Zhou, J.; Wada, K. A measurement coding system for block-based compressive sensing images by using pixel-domain features. In Proceedings of the 2019 Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; p. 599. [Google Scholar]
- KL, B.R.; Pudi, V.; Appina, B.; Chattopadhyay, A. Image Compression Based On Near Lossless Predictive Measurement Coding for Block Based Compressive Sensing. IEEE Trans. Circuits Syst. II Express Briefs 2023. [Google Scholar] [CrossRef]
- Peetakul, J.; Zhou, J. Temporal redundancy reduction in compressive video sensing by using moving detection and inter-coding. In Proceedings of the 2020 Data Compression Conference (DCC), Snowbird, UT, USA, 24–27 March 2020; p. 387. [Google Scholar]
- Kimishima, F.; Yang, J.; Tran, T.T.; Zhou, J. Frame Adaptive Rate Control Scheme for Video Compressive Sensing. In Proceedings of the International Conference on Image Analysis and Processing, Lecce, Italy, 23–27 May 2022; pp. 247–256. [Google Scholar]
- Wan, R.; Zhou, J.; Huang, B.; Zeng, H.; Fan, Y. APMC: Adjacent pixels based measurement coding system for compressively sensed images. IEEE Trans. Multimed. 2021, 24, 3558–3569. [Google Scholar] [CrossRef]
- Donoho, D.L.; Maleki, A.; Montanari, A. Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. USA 2009, 106, 18914–18919. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Candes, E.; Romberg, J. l1-Magic: Recovery of Sparse Signals via Convex Programming. 2005, Volume 4, p. 16. Available online: www.acm.caltech.edu/l1magic/downloads/l1magic.pdf (accessed on 31 October 2005).
- Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, C.; Zhao, D.; Gao, W. Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization. Signal Process. 2014, 103, 114–126. [Google Scholar] [CrossRef]
- Do, T.T.; Gan, L.; Nguyen, N.; Tran, T.D. Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In Proceedings of the 2008 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 26–29 October 2008; pp. 581–587. [Google Scholar]
- Li, L.; Fang, Y.; Liu, L.; Peng, H.; Kurths, J.; Yang, Y. Overview of compressed sensing: Sensing model, reconstruction algorithm, and its applications. Appl. Sci. 2020, 10, 5909. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, J.; Liu, Q.; Liu, B.; Guo, G. Dual-path attention network for compressed sensing image reconstruction. IEEE Trans. Image Process. 2020, 29, 9482–9495. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Y.; Liu, Q.; Huang, R. Learning memory augmented cascading network for compressed sensing of images. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 513–529. [Google Scholar]
- You, D.; Xie, J.; Zhang, J. ISTA-NET++: Flexible deep unfolding network for compressive sensing. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar]
- Chen, W.; Yang, C.; Yang, X. FSOINET: Feature-space optimization-inspired network for image compressive sensing. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 2460–2464. [Google Scholar]
- Song, J.; Chen, B.; Zhang, J. Dynamic Path-Controllable Deep Unfolding Network for Compressive Sensing. IEEE Trans. Image Process. 2023, 32, 2202–2214. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, F.; Liu, S.; Zhao, D. Scalable convolutional neural network for image compressed sensing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12290–12299. [Google Scholar]
- You, D.; Zhang, J.; Xie, J.; Chen, B.; Ma, S. Coast: Controllable arbitrary-sampling network for compressive sensing. IEEE Trans. Image Process. 2021, 30, 6066–6080. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, B.; Zhang, L. Saliency-based compressive sampling for image signals. IEEE Signal Process. Lett. 2010, 17, 973–976. [Google Scholar]
- Chen, B.; Zhang, J. Content-aware scalable deep compressed sensing. IEEE Trans. Image Process. 2022, 31, 5412–5426. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, B.; Zhang, L. Hebbian-based neural networks for bottom-up visual attention systems. In Neural Information Processing, Proceedings of the 16th International Conference, ICONIP 2009, Bangkok, Thailand, 1–5 December 2009; Proceedings, Part I 16; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–9. [Google Scholar]
- Jiang, H.; Deng, W.; Shen, Z. Surveillance video processing using compressive sensing. arXiv 2013, arXiv:1302.1942. [Google Scholar] [CrossRef]
- Nandhini, S.A.; Radha, S.; Kishore, R. Efficient compressed sensing based object detection system for video surveillance application in WMSN. Multimed. Tools Appl. 2018, 77, 1905–1925. [Google Scholar] [CrossRef]
- Du, J.; Xie, X.; Shi, G. Multi-rate Video Compressive Sensing for Fixed Scene Measurement. In Proceedings of the 2021 5th International Conference on Video and Image Processing, Hayward, CA, USA, 22–25 December 2021; pp. 177–183. [Google Scholar]
- Liao, L.; Li, K.; Yang, C.; Liu, J. Low-cost image compressive sensing with multiple measurement rates for object detection. Sensors 2019, 19, 2079. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, H.; Fan, Y.; Zhou, J. VCSL: Video Compressive Sensing with Low-complexity ROI Detection in Compressed Domain. In Proceedings of the 2023 Data Compression Conference (DCC), Snowbird, UT, USA, 21–24 March 2023; p. 1. [Google Scholar]
- Yang, J.; Wang, H.; Taniguchi, I.; Fan, Y.; Zhou, J. aVCSR: Adaptive Video Compressive Sensing using Region-of-Interest Detection in the Compressed Domain. IEEE MultiMed. 2023, 1–10. [Google Scholar] [CrossRef]
- VIRAT Description. Available online: http://www.viratdata.org/ (accessed on 20 January 2024).
- Xu, J.; Yang, J.; Kimishima, F.; Taniguchi, I.; Zhou, J. Compressive Sensing Based Image Codec With Partial Pre-Calculation. IEEE Trans. Multimed. 2023. [Google Scholar] [CrossRef]
- Shen, M.; Xue, P.; Wang, C. Down-sampling based video coding using super-resolution technique. IEEE Trans. Circuits Syst. Video Technol. 2011, 21, 755–765. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, X.; Zhang, X.; Wang, S.; Wang, R.; Ma, S. A dual-network based super-resolution for compressed high definition video. In Advances in Multimedia Information Processing–PCM 2018, Proceedings of the 19th Pacific-Rim Conference on Multimedia, Hefei, China, 21–22 September 2018; Proceedings, Part I 19; Springer: Berlin/Heidelberg, Germany, 2018; pp. 600–610. [Google Scholar]
- Li, Y.; Liu, D.; Li, H.; Li, L.; Wu, F.; Zhang, H.; Yang, H. Convolutional neural network-based block up-sampling for intra frame coding. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 2316–2330. [Google Scholar] [CrossRef]
- Khattab, M.M.; Zeki, A.M.; Alwan, A.A.; Bouallegue, B.; Matter, S.S.; Ahmed, A.M. A Hybrid Regularization-Based Multi-Frame Super-Resolution Using Bayesian Framework. Comput. Syst. Sci. Eng. 2023, 44, 35–54. [Google Scholar] [CrossRef]
- Yang, J.; Pham, C.D.K.; Zhou, J. JVCSR: Video Compressive Sensing Reconstruction with Joint In-Loop Reference Enhancement and Out-Loop Super-Resolution. In Proceedings of the International Conference on Multimedia Modeling, Phu Quoc, Vietnam, 6–10 June 2022; pp. 455–466. [Google Scholar]
- Miandji, E.; Hajisharif, S.; Unger, J. A unified framework for compression and compressed sensing of light fields and light field videos. ACM Trans. Graph. (TOG) 2019, 38, 1–18. [Google Scholar] [CrossRef]
- Babacan, S.D.; Ansorge, R.; Luessi, M.; Matarán, P.R.; Molina, R.; Katsaggelos, A.K. Compressive light field sensing. IEEE Trans. Image Process. 2012, 21, 4746–4757. [Google Scholar] [CrossRef]
- Ashok, A.; Neifeld, M.A. Compressive light field imaging. In Proceedings of the Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, Orlando, FL, USA, 5–9 April 2010; Volume 7690, pp. 221–232. [Google Scholar]
- Guo, M.; Hou, J.; Jin, J.; Chen, J.; Chau, L.P. Deep spatial-angular regularization for compressive light field reconstruction over coded apertures. In Computer Vision–ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part II 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 278–294. [Google Scholar]
- Linh-Trung, N.; Van Phong, D.; Hussain, Z.M.; Huynh, H.T.; Morgan, V.L.; Gore, J.C. Compressed sensing using chaos filters. In Proceedings of the 2008 Australasian Telecommunication Networks and Applications Conference, Adelaide, SA, Australia, 7–10 December 2008; pp. 219–223. [Google Scholar]
- Sun, Y.; Han, G.; Huang, L.; Wang, S.; Xiang, J. Construction of block circulant measurement matrix based on hybrid chaos: Bernoulli sequences. In Proceedings of the 2020 4th International Conference on Digital Signal Processing, Chengdu, China, 19–21 June 2020; pp. 1–6. [Google Scholar]
- Jabor, M.S.; Azez, A.S.; Campelo, J.C.; Bonastre Pina, A. New approach to improve power consumption associated with blockchain in WSNs. PLoS ONE 2023, 18, e0285924. [Google Scholar] [CrossRef]
- Theu, L.T.; Huy, T.Q.; Quynh, T.T.T.; Tran, D.T. Imaging Ultrasound Scattering Targets using Density-Enhanced Chaotic Compressive Sampling. In Proceedings of the 2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Taipei, Taiwan, 31 October–3 November 2023; pp. 1285–1290. [Google Scholar]
- Ye, D.; Ni, Z.; Wang, H.; Zhang, J.; Wang, S.; Kwong, S. CSformer: Bridging convolution and transformer for compressive sensing. IEEE Trans. Image Process. 2023, 32, 2827–2842. [Google Scholar] [CrossRef]
- Huyan, L.; Li, Y.; Jiang, D.; Zhang, Y.; Zhou, Q.; Li, B.; Wei, J.; Liu, J.; Zhang, Y.; Wang, P.; et al. Remote Sensing Imagery Object Detection Model Compression via Tucker Decomposition. Mathematics 2023, 11, 856. [Google Scholar] [CrossRef]
- Arena, P.; Basile, A.; Bucolo, M.; Fortuna, L. An object oriented segmentation on analog CNN chip. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2003, 50, 837–846. [Google Scholar] [CrossRef]
- Ramirez, J.M.; Torre, J.I.M.; Arguello, H. Feature fusion via dual-resolution compressive measurement matrix analysis for spectral image classification. Signal Process. Image Commun. 2021, 90, 116014. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, X.; Li, C.; Liu, Y.; Jiang, H. Recognition-oriented image compressive sensing with deep learning. IEEE Trans. Multimed. 2022, 25, 2022–2032. [Google Scholar] [CrossRef]
Image | CS Ratio | Measurement Matrices | ||||
---|---|---|---|---|---|---|
RGM [43] | Hadamard [44] | Bernoulli [45] | Toplitz [48] | APMM [63] | ||
Lenna | 30% | 33.24 | 28.25 | 29.87 | 28.26 | 33.98 |
40% | 34.76 | 29.71 | 31.24 | 30.83 | 36.04 | |
50% | 36.39 | 30.92 | 32.48 | 33.91 | 37.69 | |
Clown | 30% | 32.15 | 24.59 | 28.36 | 26.85 | 32.79 |
40% | 33.52 | 26.94 | 30.49 | 28.93 | 35.17 | |
50% | 35.46 | 28.03 | 30.67 | 31.42 | 37.08 | |
Peppers | 30% | 33.59 | 27.78 | 30.24 | 30.40 | 33.83 |
40% | 34.82 | 28.03 | 32.18 | 32.75 | 35.50 | |
50% | 36.14 | 30.17 | 33.52 | 33.35 | 36.74 |
Methods | CS Ratio | Parameter (M) /Time (ms) | ||||
---|---|---|---|---|---|---|
1% | 4% | 10% | 30% | 50% | ||
ReconNet [55] | 17.43/0.4017 | 20.93/0.5897 | 24.38/0.7301 | 29.09/0.8693 | 32.25/0.9177 | 0.98/2.69 |
DPA-Net [78] | 18.05/0.5011 | 23.50/0.7205 | 26.99/0.8354 | 33.35/0.9425 | 36.80/0.9685 | 65.17/36.49 |
CSNet+ [56] | 20.67/0.5411 | 24.83/0.7480 | 28.34/0.8580 | 34.27/0.9492 | 38.47/0.9796 | 4.35/16.77 |
OPINE-Net [59] | 20.15/0.5340 | 25.69/0.7920 | 29.81/0.8904 | 35.79/0.9541 | 40.19/0.9800 | 4.35/17.31 |
AMP-Net [58] | 20.55/0.5638 | 25.14/0.7701 | 29.42/0.8782 | 35.91/0.9576 | 40.26/0.9786 | 6.08/27.38 |
DeepBCS [60] | 20.86/0.5510 | 24.90/0.7531 | 29.42/0.8673 | 35.63/0.9495 | 39.58/0.9734 | 1.64/83.86 |
COAST [84] * | - | - | 30.03/0.8946 | 36.35/0.9618 | 40.32/0.9804 | 1.12/45.54 |
CASNet [86] | 21.97/0.6140 | 26.41/0.8153 | 30.36/0.9014 | 36.92/0.9662 | 40.93/0.9826 | 16.90/97.37 |
Methods | Matrix Learnability | Deblocking Ability | CS Ratio Scalability | CS Ratio Adaptability | Video-Oriented Enhancement |
---|---|---|---|---|---|
ReconNet [55] | ✗ | ✗ | ✗ | ✗ | ✗ |
CSNet+ [56] | ✓ | ✓ | ✗ | ✗ | ✗ |
AMP-Net [58] | ✓ | ✓ | ✗ | ✗ | ✗ |
OPINE-Net [59] | ✓ | ✓ | ✗ | ✗ | ✗ |
DeepBCS [60] | ✓ | ✓ | ✗ | ✓ | ✗ |
DPA-Net [78] | ✗ | ✓ | ✗ | ✗ | ✗ |
ISTA-Net++ [80] | ✗ | ✓ | ✓ | ✗ | ✗ |
FSOINET [81] | ✓ | ✓ | ✗ | ✗ | ✗ |
DPC-DUN [82] | ✗ | ✓ | ✗ | ✗ | ✗ |
COAST [84] | ✓ | ✓ | ✗ | ✓ | ✗ |
CASNet [86] | ✓ | ✓ | ✓ | ✓ | ✗ |
MRVCS [90] | ✗ | ✗ | ✗ | ✓ | ✓ |
VCSL [92] | ✗ | ✓ | ✗ | ✓ | ✓ |
JVCSR [100] | ✓ | ✓ | ✗ | ✗ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Yang, J. Compressive Sensing in Image/Video Compression: Sampling, Coding, Reconstruction, and Codec Optimization. Information 2024, 15, 75. https://doi.org/10.3390/info15020075
Zhou J, Yang J. Compressive Sensing in Image/Video Compression: Sampling, Coding, Reconstruction, and Codec Optimization. Information. 2024; 15(2):75. https://doi.org/10.3390/info15020075
Chicago/Turabian StyleZhou, Jinjia, and Jian Yang. 2024. "Compressive Sensing in Image/Video Compression: Sampling, Coding, Reconstruction, and Codec Optimization" Information 15, no. 2: 75. https://doi.org/10.3390/info15020075
APA StyleZhou, J., & Yang, J. (2024). Compressive Sensing in Image/Video Compression: Sampling, Coding, Reconstruction, and Codec Optimization. Information, 15(2), 75. https://doi.org/10.3390/info15020075