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Abstract: Compressive Sensing (CS) has emerged as a transformative technique in image compression,
offering innovative solutions to challenges in efficient signal representation and acquisition. This
paper provides a comprehensive exploration of the key components within the domain of CS applied
to image and video compression. We delve into the fundamental principles of CS, highlighting its
ability to efficiently capture and represent sparse signals. The sampling strategies employed in image
compression applications are examined, emphasizing the role of CS in optimizing the acquisition of
visual data. The measurement coding techniques leveraging the sparsity of signals are discussed,
showcasing their impact on reducing data redundancy and storage requirements. Reconstruction
algorithms play a pivotal role in CS, and this article reviews state-of-the-art methods, ensuring a
high-fidelity reconstruction of visual information. Additionally, we explore the intricate optimization
between the CS encoder and decoder, shedding light on advancements that enhance the efficiency and
performance of compression techniques in different scenarios. Through a comprehensive analysis of
these components, this review aims to provide a holistic understanding of the applications, challenges,
and potential optimizations in employing CS for image and video compression tasks.

Keywords: compressive sensing; sampling; measurement coding; reconstruction algorithm; codec
optimization

1. Introduction

In the era of rapid technological advancement, the sheer volume of data generated
and exchanged daily has become staggering. This influx of information, from high-
resolution images to bandwidth-intensive videos, has posed unprecedented challenges
to conventional methods of data transmission and storage. As we grapple with the ever-
growing demand for the efficient handling of these vast datasets, a groundbreaking concept
emerges—Compressive Sensing [1].

Traditionally, the Nyquist–Shannon sampling theorem [2] has governed our approach
to capturing and reconstructing signals, emphasizing the need to sample at twice the rate
of the signal’s bandwidth to avoid information loss. However, in the face of escalating
data sizes and complexities, this theorem’s practicality is increasingly strained. Compres-
sive Sensing, as a disruptive force, challenges the assumptions of Nyquist–Shannon by
advocating for a selective and strategic sampling technique.

In general, CS is a revolutionary signal-processing technique that hinges on the idea
that sparse signals can be accurately reconstructed from a significantly reduced set of
measurements. The principle of CS involves capturing a compressed version of a signal,
enabling efficient data acquisition and transmission. As the Figure 1 shows, in the field of
image processing, numerous works have been proposed in each of various domains, ex-
ploring innovative techniques and algorithms to harness the potential of compressive imag-
ing [3–11], efficient communication systems [12–20], pattern recognition [21–29], and video
processing tasks [30–38]. The versatility and effectiveness of CS make it a compelling area
of study with broad implications across different fields of signal processing and information
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retrieval. Moreover, Figure 2 illustrates the annual publication count of articles related
to CS in the four major domains of CS applications in image processing since 2010. It
is evident that CS-related research has increasingly become a focal point of attention for
researchers. Therefore, a comprehensive and integrated introduction to CS is anticipated.
The main contributions of this review are as follows:

• This review emphasizes various sampling techniques, with a focus on designing
measurement matrices for superior reconstruction and efficient coding.

• We explore the intricacies of measurement coding, covering approaches like intra
prediction, inter prediction, and rate control.

• We provide a comprehensive analysis of CS codec optimization, including diverse
reconstruction algorithms, and discuss current challenges and future prospects.

Compressive Imaging

Pattern Recognition

Communication System

Video Processing

Medical Imaging

Radar Imaging

Wireless Sensor Networks

Internet of  Things

Face recognition 

Gesture Recognition

Video Acquisition and Recovery 

Steaming Video Acquisition

3D Video Sensing 

Gait Recognition

MIMO Communication

Microscopy

Figure 1. The applications of compressive sensing in image/video processing.

The remainder of this paper is organized as follows: Section 2 presents an overview
of the principles of compressive sensing. In Section 3, we introduce algorithms for the
sampling part in CS, with a particular emphasis on the measurement matrices designed
for better reconstruction quality and those optimized for improved measurement coding.
The methods of intra/inter prediction and rate control in measurement coding are elabo-
rated in detail in Section 4. Corresponding to the sampling, the reconstruction methods
will be discussed in Section 5, where they are from both traditional and learning-based
algorithms. Section 6 provides a detailed discussion on the overall optimization of the CS
codec. In Section 7, we discuss the current challenges and future scope of the CS technique.
An eventual conclusion of the paper will be given in Section 8.

Figure 2. The paper numbers of compressive sensing research in image processing during the
past decade.



Information 2024, 15, 75 3 of 21

2. Compressive Sensing Overview

Consider an original signal X, which is an N-length vector that can be sparsely
represented as S in a transformed domain using a specific N × N transform matrix Ψ,
where K-sparse implies that only K elements are non-zero, and the remaining are close to
or equal to zero. This relationship is expressed by the equation:

XN×1 = ΨN×NSN×1. (1)

The sensing matrix, also known as the sampling matrix A, is derived by multiplying
an M × N measurement matrix Φ by the transform matrix Ψ, where K ≪ M ≪ N:

AM×N = ΦM×NΨN×N . (2)

The sampling rate, or Compressed Sensing (CS) ratio, denoted as the number of
measurements M divided by the signal length N, indicates the fraction of the signal that
is sampled:

Sampling Rate (CS ratio) =
M
N

. (3)

Finally, the measurement vector Y is obtained by multiplying the sensing matrix A
with the sparse signal S:

YM×1 = ΦM×NΨN×NSN×1. (4)

Figure 3 shows the sampling procedure details of CS. We will elaborate the setting
and design of the measurement matrix in Section 3.

Transform Matrix 𝜳

Measurement Matrix 𝛷 Measurement 𝒀

N × 1

M × N

=

M × 1

N × N

K-Sparse Vector S

×

Sensing Matrix 𝑨

Original Signal X

×

Figure 3. Procedure of compressive sensing encoder.

Since the CS reconstruction is an ill-posed problem [39], to obtain a reliable recon-
struction, the conventional optimization-based CS methods commonly solve an energy
function as:

X̂ = arg min
X

1
2
∥ΦX − y∥2

2 + λR(X), (5)

where 1
2∥ΦX − y∥2

2 represents the data-fidelity term for modeling the likelihood of degra-
dation, and the λR(X) indicates the prior term with a parameter of regularization of λ.
The details for the CS reconstruction will be introduced in Section 5, later.
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3. Sampling Algorithms
3.1. Measurement Matrix for Better Reconstructions

One of the fascinating aspects of compressive sensing focuses on the development of
measurement matrices. The construction of these matrices is crucial, as they need to meet
specific constraints. They should align coherently with the sparsifying matrix to efficiently
capture essential information from the initial signal with the least number of projections.
On the other hand, the matrix needs to satisfy the restricted isometry property (RIP) to
preserve the original signal’s main information in the compression process. However,
in the research of [40,41], they verified the possibility that maintaining sparsity levels in
a compressive sensing environment does not necessarily require the presence of the RIP,
and also demonstrated that it is not a mandatory requirement for adhering to the random
model of a signal. Moreover, designing a measurement matrix with low complexity and
hardware-friendly characteristics has become more and more crucial in the context of
real-time applications and low-power requirements.

In CS-related research a decade ago, random matrices like Gaussian or Bernoulli ma-
trices were often selected as the measurement matrices, which satisfied the RIP conditions
of CS. Although these random matrices are easy to implement and contribute to improved
reconstruction performance, they come with several notable disadvantages, such as the
requirement for significant storage resources and the challenging recovery while dealing
with large signal dimensions [42]. Therefore, the issue of the measurement matrix has been
widely discussed in recent works.

3.1.1. Conventional Measurement Matrix

Conventional measurement matrices encompass multiple categories, ranging from
random matrices to deterministic matrices, each contributing uniquely to the applications
in CS. Random matrices are constructed by randomly selecting elements from a certain
probability distribution, such as the random Gaussian matrix (RGM) [43] and random
binary matrix (RBM) [44]. The well-known traditional deterministic matrices include the
Bernoulli matrix [45], Hadamard matrix [46], Walsh matrix [47], and Toplitz matrix [48].
Figure 4 gives an example of two famous deterministic matrices.

(a) (b)

Figure 4. (a) is Hadamard Matrix and (b) is Walsh Matrix.

Although these deterministic matrices have been extensively researched and success-
fully applied to the CS camera, because of their good sensing performance, fast recon-
struction, and hardware-friendly properties, they are insupportable when applied to the
ultra-low CS ratio [49]. Moreover, for instance, in the work of [44], the information of the
pixel domain can be obtained by changing a few rows in the matrix, but the modified matrix
results in an unacceptable reconstruction performance, posing enormous challenges for
practical applications. In recent years, some studies have been carried out to investigate the
effect of Hadamard and Walsh projection order selection on image reconstruction quality
by reordering orthogonal matrices [50–54]. A Hadamard-based Russian-doll ordering
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matrix is proposed in [50], which sorts the projection patterns by increasing the number
of zero-crossing components. In the works of [51,52], the authors present a matrix, called
the cake-cutting ordering of Hadamard, which can optimally reorder the deterministic
Hadamard basis. More recently, the work of [54] designs a novel hardware-friendly matrix
named the Zigzag-ordered Walsh (ZoW). Specifically, the ZoW matrix uses the zigzag to
reorder the blocks from the Walsh matrix, and, finally, vectored them. The illustration of
the process is shown in Figure 5.

𝑏

𝑏

b

Walsh Matrix

Zigzag Order

Zigzag ordered Walsh Matrix

Figure 5. The illustration of the process from Walsh matrix to ZoW matrix.

In the proposed matrix of [54], the low-frequency patterns are in the upper-left corner,
and the frequency increases according to the zigzag scan order. Therefore, across different
sampling rates, ZoW consistently retains the lowest frequency patterns, which are pivotal
for determining the image quality. This allows ZoW to extract features effectively from low
to high-frequency components.

3.1.2. Learning-Based Measurement Matrix

Recently, there has been a surge in the development of image CS algorithms based
on deep neural networks. These algorithms aim to acquire features from training data to
comprehend the underlying representation and subsequently reconstruct test data from
their CS measurements. Therefore, some learning-based algorithms are developed to jointly
optimize the sampling matrix and the non-linear recovery operator [55–61]. Ref. [55]’s
first attempt leads into a fully connected layeras the sampling matrix for simultaneous
sampling and recovery. In the works of [56,57], the authors present the idea of adopting a
convolution layer to mimic the sampling process and utilize all-convolutional networks
for CS reconstruction. These methods not only train the sampling and recovery stages
jointly but are also non-iterative, leading to a significant reduction in time complexity
compared to their optimization-based counterparts. However, only utilizing the fully
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connected or repetitive convolutional layers for the joint learning of the sampling ma-
trix and recovery operator lacks structural diversity, which can be the bottleneck for a
further performance improvement. To address this drawback, Ref. [59] proposes a novel
optimization-inspired deep-structured network (OPINE-Net), which includes a data-driven
and adaptively learned matrix. Specifically, the measurement matrix Φ ∈ RM×N is a train-
able parameter and is adaptively learned by the training dataset. Two constraints are
applied to attain the trained matrix simultaneously. Firstly, the orthogonal constraint is
designed into a loss term and then enforced into the total loss, as follows:

Lorth =
1

M2 ∥ΦΦ⊤ − I∥2
F (6)

where I represents the identity matrix. For the binary constraint, they introduce an element-
wise operation, defined below:

BinarySign(z) = 1 if z ≥ 0 or − 1 if z < 0 (7)

Experiments show that their proposed learnable matrix can achieve a superior re-
construction performance with constraint incorporation when compared to conventional
measurement matrices.

In general, by learning the features of signals, learning-based measurement matrices
can more effectively capture the sparse representation of signals. This personalized adapt-
ability enables learning-based measurement matrices to outperform traditional construction
methods in certain scenarios. Another strength of learning-based measurement matrices
is their adaptability. By adjusting training data and algorithm parameters, customized
measurement matrices can be generated for different types of signals and application
scenarios, enhancing the applicability of compressed sensing in diverse tasks. However,
obtaining these trainable matrices usually needs a substantial amount of training data and
complex algorithms. We believe that the future research focus will revolve around devising
more efficient approaches to acquire matrices with better adaptability.

3.2. Measurement Matrix for Better Measurement Coding

It is noticed that the data reduction from the original signal to CS measurement does
not completely equal signal compression, and these measurements can indeed be transmit-
ted directly, but still require a substantial bandwidth. To alleviate the transmitter’s load
further, the CS-based CMOS image sensor can collaborate with a compressor to produce a
compressed bitstream. However, due to the high complexity, the conventional pixel-based
compressor is not suitable for CS systems aiming at reducing the computational complexity
and power consumption of the encoder [1]. The difference between conventional image
sensors and CS-based sensors is shown in Figure 6.

Measurement 

Domain 

Compressor

M

Measurements

N 

Pixels

M<<N 

Pixel 

Array

Analog-to-

Digital

Conversion

Analog-to-

Digital

Conversion

Measurement 

Matrix

Pixel

 Domain 

Compressor

Transmitter

Transmitter

(a)

(b)

Light

Light

Transmission

Transmission

CS-based CMOS Image Sensor

CMOS Image Sensor Encoder

Encoder

Figure 6. The illustration of conventional imaging system (a) and CS-based CMOS image sensor (b).
The measurement coding is performed on the latter.

Therefore, to further compress measurements, several well-designed measurement
matrices for better measurement coding have been recently proposed [62,63]. Wherein,



Information 2024, 15, 75 7 of 21

a novel framework for measurement coding is proposed in [63], and designs an adjacent
pixels-based measurement matrix (APMM) to obtain measurements of each block, which
contains block boundary information as a reference for intra prediction. Specifically, a set of
four directional prediction modes is employed to generate prediction candidates for each
block, from which the optimal prediction is selected for further processing. The residuals
represent the difference between measurements and predictions and undergo quantization
and Huffman coding to create a coded bit sequence for transmission. Importantly, each
encoding step corresponds to a specific operation in the decoding process, ensuring a
coherent and reversible transformation. Extensive experimental results show that [63]
can obtain a superior trade-off between the bit-rate and reconstruction quality. Table 1
illustrates the comparison of different introduced measurement matrices that are commonly
used in CS.

Table 1. The PSNR (dB) performance of different matrices on Set5 dataset.

Image CS Ratio
Measurement Matrices

RGM [43] Hadamard [44] Bernoulli [45] Toplitz [48] APMM [63]

Lenna
30% 33.24 28.25 29.87 28.26 33.98
40% 34.76 29.71 31.24 30.83 36.04
50% 36.39 30.92 32.48 33.91 37.69

Clown
30% 32.15 24.59 28.36 26.85 32.79
40% 33.52 26.94 30.49 28.93 35.17
50% 35.46 28.03 30.67 31.42 37.08

Peppers
30% 33.59 27.78 30.24 30.40 33.83
40% 34.82 28.03 32.18 32.75 35.50
50% 36.14 30.17 33.52 33.35 36.74

4. Measurement Coding

In addition to designing a measurement matrix to enhance measurement coding, three
key aspects further contribute to refining coding advantages: intra prediction, inter pre-
diction, and rate control. Intra prediction involves predicting pixel values within a frame,
exploiting spatial correlations to enhance compression efficiency. Inter prediction extends
this concept by considering the temporal correlation between consecutive frames, facilitat-
ing enhanced predictive coding. Meanwhile, effective rate control mechanisms are essential
for balancing compression ratios without compromising the quality of the reconstructed
signal. By addressing these aspects in tandem with a well-designed measurement matrix,
a comprehensive approach is established for advancing measurement coding capabilities,
thereby improving the overall system performance and resource utilization.

4.1. Measurement Intra Prediction

This intra prediction approach in measurement coding aims to reduce the number of
measurements needed for accurate signal representation. It is especially valuable when
dealing with sparse or compressible signals, where the prediction of one block’s measure-
ments can inform and enhance the prediction accuracy of adjacent blocks.

Hence, some studies are dedicated to this aspect and propose numerous novel algo-
rithms [63–65]. In the works of [64], the authors mainly present an angular measurement
intra prediction algorithm compatible with CS-based image sensors. Specifically, they
apply the idea of an H.264 intra prediction and emulate its computation. More structural
rows in the random 0/1 measurement matrix are designed for embedding more precise
boundary information of neighbors for intra prediction. Ref. [65] applies the Hadamard
matrix instead of the random matrix to sampling and generate predictive candidates, since
the pseudo-random cannot guarantee the similarity between the sender and receiver. More-
over, the features of the pixel domain are also utilized to effectively reduce the spatial
redundancy in the measurement domain. However, Ref. [65] achieves a good performance
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but requires high hardware resources. To address this shortcoming, the research of [66]
proposes a novel near lossless predictive coding (NLPC) approach to compress block-based
CS measurements, which encodes the prediction error measurement between the target
and current measurement to attain a lower data size. Furthermore, a complete block-based
CS with NLPC with scalar quantization (BCS-NLPC-SQ) is designed in [66] to explore
the image quality at varying CS ratios with different blocking sizes. In the previously
mentioned work of [63], the authors not only propose a novel matrix APMM for better
measurement coding but also present a four-mode intra prediction strategy, which is called
the measurement-domain intra prediction (MDIP). An optimal prediction mode for each
block is selected from a set of candidates to minimize the difference between the prediction
and the current block. Each block is predicted based on the boundary measurements
from neighboring and previously encoded blocks. Comparing the sum of absolute differ-
ences of four prediction candidates for each block will be utilized to minimize the amount
of information to be coded. Combined with the aforementioned APMM, the proposed
measurement coding framework demonstrates a superiority in data compression.

4.2. Measurement Inter Coding

Regarding the measurement coding in video-oriented CS, the spatial and temporal
redundancy in measurement has become a primary concern that is necessary to further
compress. Accordingly, a novel work with inter prediction is proposed to further reduce
the spatial redundancy in measurements while still maintaining visual quality [67]. In [67],
the authors divide the type of measurement into two portions: static measurement as
the non-moving part and dynamic measurement as the moving part in the pixel domain.
In general, the information of consecutive frames is similar, resulting in temporal redun-
dancy. To further reduce the bandwidth usage, quantization is a straightforward approach,
such as scalar feedback quantization (SFQ). However, the output from CS is represented in
a compressed vector, in which an existing video compression algorithm could not be used.
Therefore, the work of [67] designs a temporal redundancy reduction method in video CS
over the communication channel, which can be shown in Figure 7.

Sampling by

Compressive sensing

Video sequence
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Figure 7. The intra/inter prediction of measurement coding in compressive sensing.

By utilizing the framework in Figure 7, the proposed method in [67] not only achieves
a comparable estimation performance but also effectively reduces sampling costs, easing
the burdens on communication and storage. As a result, this straightforward strategy offers
a practical solution to mitigate the bandwidth usage.
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4.3. Rate Control

On the other hand, the rate control is another critical strategy in CS, involving the
allocation of limited measurement resources to ensure the quality of signal recovery. The
rate control requires a balance between the design of the measurement matrix, the sam-
pling rate, and the accuracy of signal reconstruction. Optimizing the bit-rate allocation
allows for better signal recovery under constrained resources, especially in wireless sensor
networks (WSN).

The work of [68] develops a frame adaptive rate control scheme for video CS. Figure 8
illustrates the part of rate control in their proposed framework. In a nutshell, the rate
limitation will lead the first frame to find an initial value of QP by their proposed triangle
threshold-based quantization method and guide the subsequent frames to adjust the QP
based on the predicted QP. The paper of [69] is the extended version of [63] that was
described before. In [69], the authors further propose the rate control algorithm using an
iterative approach. They consider that the reconstruction quality and the encoded bit-rate
mainly rely on two parameters, the CS ratio and the quantization step size. Therefore, they
design a rate control algorithm to further process the residuals between measurements and
predictions, in order to generate a coded bit sequence for transmitting. As a result, with a
component of rate control, their proposed framework can compress the measurements and
increase coding efficiency significantly with excellent reconstruction quality, leading to a
smaller bandwidth required in communication systems.

Measurements
Is initial frame?

Adjust QP

base on the

preQP

Adjust QP

of each 

block

QP

Buffer

Find initial 

QP
Quantization

Huffman coding

preQP = QP in previous frame

Rate Control

Rate limitation

Dequantization

Yes

No

Figure 8. The flow chart of rate control in the work of [68].

5. Reconstruction Approaches

In CS, reconstruction represents the method to recover the original signal from com-
pressed measurement data. The fundamental idea behind CS reconstruction is to cap-
ture signal information with significantly fewer measurements than traditional sampling
methods, enabling the efficient compression and subsequent reconstruction of the signal.
The reconstruction aims to accurately restore sparse signals from a relatively small number
of measurements using mathematical models and prior knowledge about the sparsity of the
signal. The objective of the reconstruction approach is to minimize distortions and errors
introduced during the measurement process, while preserving the structural integrity of the
signal. In the following subsections, we will elaborate on reconstruction methods from both
conventional reconstruction methods and deep learning-based reconstruction methods.

5.1. Conventional Reconstruction Methods

There are typically two types of conventional reconstruction methods based on the
constraint: L1-norm-based and L0-norm-based algorithms. L1-norm-based CS reconstruc-
tion algorithms commonly use the L1-norm as a measure of sparsity. The goal of these
algorithms is to find a sparse representation such that the difference between the measured
values and the original signal is minimized. Some common algorithms for the L1-norm
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minimization include the approximate message passing (AMP) [70], iterative shrinkage-
thresholding algorithm (ISTA), Fast-ISTA [71], and L1-magic [72,73]. Correspondingly,
the L0-norm refers to the number of non-zero elements in a vector, and these methods
aim to find a representation with the fewest non-zero elements, essentially seeking the
most sparse representation. L0-norm optimization problems are often NP-hard, practical
approaches that involve approximate optimization algorithms like greedy algorithms to
find an approximate solution. The common greedy algorithms utilized in CS are orthogonal
matching pursuit (OMP) [74], L0 gradient minimization (L0GM) [75], and sparsity adaptive
matching pursuit (SAMP) [76].

In general, for the conventional reconstruction methods, L1-norm-based algorithms
are more common and easier to handle since the optimization problem associated with
L1-norm has convex properties. On the other hand, L0-norm-based algorithms can be
more complex and computationally challenging. In practical applications, L1-norm is often
preferred due to its favorable mathematical properties and computational efficiency.

5.2. Deep Learning-Based Reconstruction Methods

Regarding the conventional compressive sensing reconstruction algorithms, it is cru-
cial to address their inherent limitations. Traditional methods often struggle with the
reconstruction of highly complex signals and may encounter challenges in accurately cap-
turing intricate features due to their reliance on fixed mathematical models. Moreover,
these approaches typically assume sparsity as a priori information, which might not hold
for all types of signals [77]. Recognizing these shortcomings, a paradigm shift has occurred
in the form of deep learning-based CS reconstruction algorithms. These innovative ap-
proaches leverage the power of neural networks to adaptively learn and model complex
signal structures, paving the way for more robust and versatile reconstruction capabilities.

Fueled by the robustness of convolutional neural networks (CNN), numerous learning-
based CS reconstruction approaches have been developed by directly learning the inverse
mapping from the measurement domain to the original signal domain [55,56,78]. The study
conducted by [55] introduces a non-iterative and notably fast algorithm for image re-
construction from random CS measurements. A novel class of CNN architectures called
ReconNet is introduced in their work, which takes in CS measurements of an image block
as input and outputs the reconstructed image block. In [56], the authors focus on solving
the problem of how to design a sampling mechanism to achieve optimal sampling efficiency,
and how to perform the reconstruction to obtain the highest quality to achieve an optimal
signal recovery. As a result, they design the sampling operator via a convolution layer
and develop a convolutional neural network for reconstruction (CSNet+), which learns
an end-to-end mapping between the measurement and target image. To preserve more
texture details, a dual-path attention network for CS image reconstruction is proposed in
the research of [78], which is composed of a structure path, a texture path, and a texture
attention module. Specifically, the structure path is designed to reconstruct the domi-
nant structure component of the original image, and the texture path aims to recover the
remaining texture details.

Recently, to further enhance the reconstruction performance, a novel neural network
structure for CS has been developed, which is called Deep Unfolding Network (DUN).
The architecture of DUN is shown in Figure 9.

The conventional DUN architecture is usually divided into three parts in CS: The
sampling network, initialization network, and deep reconstruction network. The sampling
network aims to utilize the convolution layers to simulate the sampling operation to obtain
the measurements. Before going through deep reconstruction networking, an initialization
network is employed to generate the initial estimation of the target image. The image
reconstructed at this phase is often of subpar quality and still requires optimization and
improvement. The final recovered results will be obtained by a deep reconstruction network.
The deep reconstruction network typically consists of multiple stages, each representing
an iteration of the traditional iterative reconstruction algorithm. These stages are usually
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connected sequentially, allowing the network to learn and refine the recovery at each
stage. The advantage of deep unfolding lies in its ability to leverage the representation
power of deep neural networks to capture complex patterns and dependencies in the data,
surpassing the capabilities of traditional iterative methods.

Initial Estimation

Recovered Results

Sampling Network

Original Image Measurements

𝑿 𝑿init

𝑿𝑲

{𝒚𝒊}

Initialization Network

Deep Reconstruction Network

Stage 1Stage k-1Stage kStage K ……

Figure 9. The architecture of DUN.

Therefore, the DUN-based image compressive sensing algorithms with good inter-
pretability have been extensively proposed in recent years and have gradually become
mainstream [58,61,79–82]. The work of [79] proposes a cascading network with several in-
cremental detail reconstruction modules and measurements of residual updating modules,
which can be regarded as the prototype of DUN. Refs. [58,80] integrate the model-based
ISTA and AMP [70] algorithms into the framework of DUN, respectively, achieving a
superior performance while retaining commendable flexibility.

More recently, some researchers have started to pay attention to both the size of the net-
work parameters and the speed of the reconstruction process, while retaining the recovered
quality [61,81,82]. In general, DUN is composed of a fixed number of stages; the recovered
results will be closer to the original images while increasing the unfolding iteration number.
The authors from the research [82] perceive that the content of diverse images is substan-
tially different, and it is unnecessary to process all images indiscriminately. Adhering to
this perspective, they design a novel dynamic path-controllable deep unfolding network
(DPC-DUN). With an elaborate path-controllable selector, their model can adaptively select
a rapid and appropriate route for each image and is slimmable by regulating different
performance-complexity trade-offs.

6. Codec Optimization of CS

Encoder optimization in the context of CS involves the elaborate selection and trans-
formation of input signals into a compressed form. This phase is critical for capturing
the essential information needed for accurate signal reconstruction while discarding non-
essential components. One of the challenges lies in striking a balance between compression
ratios and the preservation of crucial signal features. On the other hand, decoder optimiza-
tion plays a pivotal role in the reconstruction of signals from the compressed representations
generated by the encoder. The decoder must efficiently recover the original information,
addressing challenges such as noise, artifacts, and inherent loss during the compression.

Recently, many researchers have been focusing on the holistic performance of CS and
developed numerous optimization approaches for CS codec, which brings the gap between
encoder and decoder enhancements. By concurrently refining both components, the CS
codec optimization aims to achieve synergistic improvements, unlocking new possibilities
for efficient data compression and signal reconstruction.
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6.1. Scalable and Adaptive Sampling-Reconstruction
6.1.1. Scalable Sampling-Reconstruction

Although the learning-based algorithms have achieved excellent results, a preva-
lent limitation among current network-based approaches is that they treat CS sampling-
reconstruction tasks separately for various sampling rates. This approach results in the
development of intricate and extensive CS systems, necessitating the storage of a multitude
of parameters. Such complexity proves to be economically burdensome when considering
hardware implementation costs.

Several studies have been proposed to save the CS system memory cost and improve
the model scalability [60,83,84]. In the work of [83], a scalable convolutional neural network
(SCSNet) is proposed to achieve scalable sampling and scalable reconstruction with only
one model. The SCSNet incorporates a hierarchical architecture and a heuristic greedy
approach performed on an auxiliary dataset to independently acquire and organize mea-
surement bases. Inspired by the conventional block-based CS methods, Ref. [60] develops
a multi-channel deep network for the block-based image CS (DeepBCS) by exploiting
inter-block correlations to achieve scalable CS ratio allocation. However, whether the
training difficulty and defect of delicacy in [83], or the weak adaptability and structural
inadequacy in [60]; both, to some extent, bring the inflexibility and low efficiency of the en-
tire framework. The authors of [84] are devoted to solving the issues of arbitrary-sampling
matrices by proposing a controllable network (COAST) and random projection augmenta-
tion to promote training diversity, thus realizing scalable sampling and reconstruction with
high efficiency.

6.1.2. Adaptive Sampling-Reconstruction

Another optimization aspect of the CS codec is to improve the adaptability while
processing different images [85,86]. The key idea is to exploit the saliency information of
images, and then allocate more sensing resources to these salient regions but fewer to non-
salient regions. Figure 10 demonstrates the illustration of adaptive sampling-reconstruction.

Allocated 

CS ratio

= 0.1532

Allocated 

CS ratio

= 0.0684

CS Ratio MapOriginal Image

Figure 10. The illustration of adaptive sampling-reconstruction. The darker the color of the blocks,
the higher the allocated CS ratio.

Given that image information is often unevenly distributed, an effective approach
to enhance the restored image quality involves optimizing CS ratio allocations based on
saliency distribution. The works of [86,87] define saliency as the locations exhibiting a low
spatial correlation with their surroundings. As illustrated in Figure 10, the block enclosed
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in the crimson box should be assigned a higher CS ratio than the one within the light
red. This adjustment is justified by the former’s intricate details and richer information
content. Being equipped with the optimization-inspired recovery subnet guided by saliency
information and a multi-block training scheme that prevents blocking artifacts in [86], this
content-aware scalable network (CASNet) can jointly reconstruct the image blocks sampled
at various CS ratios with one single model. The PSNR/SSIM and time-consuming results
for various CS algorithms on Set11 [55] are shown in Table 2. The results of five CS ratios are
provided to further demonstrate the different reconstruct robustness of different methods.

Table 2. The average PSNR (dB)/SSIM performance comparison among various CS algorithms on
Set11 [55] with five different CS ratios. The average parameter and computational complexity are
also provided.

Methods
CS Ratio Parameter (M)

1% 4% 10% 30% 50% /Time (ms)

ReconNet [55] 17.43/0.4017 20.93/0.5897 24.38/0.7301 29.09/0.8693 32.25/0.9177 0.98/2.69
DPA-Net [78] 18.05/0.5011 23.50/0.7205 26.99/0.8354 33.35/0.9425 36.80/0.9685 65.17/36.49
CSNet+ [56] 20.67/0.5411 24.83/0.7480 28.34/0.8580 34.27/0.9492 38.47/0.9796 4.35/16.77

OPINE-Net [59] 20.15/0.5340 25.69/0.7920 29.81/0.8904 35.79/0.9541 40.19/0.9800 4.35/17.31
AMP-Net [58] 20.55/0.5638 25.14/0.7701 29.42/0.8782 35.91/0.9576 40.26/0.9786 6.08/27.38
DeepBCS [60] 20.86/0.5510 24.90/0.7531 29.42/0.8673 35.63/0.9495 39.58/0.9734 1.64/83.86
COAST [84] * - - 30.03/0.8946 36.35/0.9618 40.32/0.9804 1.12/45.54
CASNet [86] 21.97/0.6140 26.41/0.8153 30.36/0.9014 36.92/0.9662 40.93/0.9826 16.90/97.37

* COAST did not provide the pre-trained models for 1% and 4% CS ratios.

The concept of adaptive sampling rates is also widely employed in surveillance video-
oriented CS algorithms [88–93]. The key idea for these methods is shown in Figure 11.

Sampled Sequence

…
…

Initial frame

ith frame

Recovered Results

Final recovered results for ith frame

Recovered non-moving objects of ith frame

 

Recovered moving objects of ith frame

Detected moving objects (ROI) of ith Frame

Figure 11. The concept of adaptive sampling-reconstruction for surveillance video.

The paper of [91] first proposes a low-cost CS with multiple measurement rates for
object detection (MRCS). We use another proposed MYOLO3 detector to predict the key
objects, and then sample the regions of the key objects as well as other regions using
multiple measurement rates to reduce the size of sampled CS measurements. However,
the additional detection networking proposed in [91] will inevitably increase the param-
eters and the complexity of the whole framework, then bring computation and budget
constraints. Moreover, the spatial and temporal correlation between successive frames of
the sequence cannot be fully utilized.

Since the sampled scenes from surveillance cameras are usually fixed, some works
have been developed to tackle these sequences in a straightforward method [88–90]. In [90],
the first round of sampling will be conducted with a lower CS ratio for the initial frame
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and the subsequent frames. By comparing the difference between the sampled measure-
ments, thereby locating the position of the moving objects, it also can be regarded as a
region-of-interest (ROI). A higher CS ratio will be allocated to these regions for sampling-
reconstruction and finally combined with the region that is regarded as background to
generate the recovered results. By this background subtraction method, the ROI can be
detected without introducing any extra network parameters, but the poor performance in
non-ROI can only be served for the video, in which the first frame is the background; this
has demonstrated that there is still much room for improvement.

To solve these issues, Ref. [92] proposes a video CS with low-complexity ROI-detection
in a compressed domain (VCSL). Different from the work of [90], a binary coordinate is
generated after defining ROI and transmitted to the reconstruction, instead of the sampled
measurement with the low CS ratio. Moreover, a novel and compact module called a
reference frame renewal (RFR) is designed in this work, which states the mechanism for
defining a suitable reference, thereby improving the robustness of the framework effectively.
Figure 12 shows the test examples from the VIRAT [94] dataset to demonstrate the superior
performance while applying [92] to the surveillance system. More recently, Ref. [93]
presents an adaptive threshold of ROI detection to replace the conventional and fixed
threshold setting manually, which further improves the flexibility of these video-oriented
background subtraction methods.

Multi-rate VCS VCSL

Initial frame of sequence “S_040100” 436th frame

Initial frame of sequence “S_000200” 185th frame

Multi-rate VCS VCSL

Figure 12. The comparison of visual results between multi-rate VCS [90] and VCSL [92].

6.2. Pre-Calculation-Based CS Codec

Another aspect of optimizing the CS codec is the pre-calculation, which is developed
in the research of [95]. In [95], the authors design a novel codec framework, named
the compressive sensing-based image codec with a partial pre-calculation (CSCP). They
perceived that in the measurement coding, encoding and decoding are time-consuming,
and the quantization has a low complexity but is lossy, leading to a significant degradation
of the reconstructed image quality. Therefore, after sampling by CS in the encoder of
CSCP, the pre-calculation is performed by another proposal matrix multiplication-based
fast reconstruction (MMFR) to attain the frequency domain data, which effectively reduces
the processing time of the decoder. Moreover, unlike the existing common CS codecs [65],
their proposed codec integrates quantization in the frequency domain after processing the
partial pre-calculation. In addition, to simplify the complicated partial pre-calculation, they
substitute the complex reconstruction with several add and shift operators relying on the
sparsity of the sensing matrix they choose to further decrease the time-consumption.

As a relatively recent work, the research of [95] paves the way for a novel direction in
optimizing CS codec more effectively and in help it to be more hardware-friendly. However,
a limitation of this work is that the proposed approach can only be applied to a specific-
sensing matrix. Developing a more universal framework for a broader range of sensing
matrices is desired in the future.
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6.3. Down-Sampling Coding-Based CS Codec

The concept of down-sampling-based coding (DBC) proposed in [96] can also be taken
into account to optimize the CS codec. As shown in Figure 13, due to the limited bandwidth
and storage capacity, videos and images are down-sampled at the encoder and up-sampled
at the decoder, which can effectively save data in storage and transmission. The down-
sampling, as observed in approaches like Bilinear and Bicubic, serves as a pre-processing
step, while up-sampling methods are employed as a post-processing step.

High-resolution Videos

Low-resolution Videos

Up-sampleDown-sample Decoder
Transmission

Encoder

Reconstructed Videos

Reconstructed  High-resolution Videos

Figure 13. The concept of down-sampling-based coding.

This type of framework usually achieves a superior rate-distortion while utilizing
network-based and high-quality super-resolution algorithms [97–99]. However, there are
few studies that conduct this idea into CS for codec optimization. Inspired by the concept of
DBC, Ref. [100] proposes a novel video compressive sensing reconstruction framework with
joint in-loop reference enhancement and out-loop super-resolution, dubbed JVCSR. Specifi-
cally, two additional modules are employed to further improve the reconstruction quality:
An in-loop reference enhancement module is developed to remove the artifacts and provide
a superior-quality frame for motion compensation cyclically. The reconstructed outputs are
fed to another proposed out-loop super-resolution module to attain a a higher-resolution
and higher-quality video at the lower bit-rates. The experimental results demonstrate that
DBC also exhibits coding advantages in CS, especially in low bit-rate transmission. It can be
anticipated that this type of method will be more widely applied to some straightforward
hardware cameras and is able to provide higher-quality videos while sending the low
compressed data.

Finally, Table 3 provides an exhaustive comparison to summarize the various abilities
of introduced algorithms.

Table 3. The comparison of the different learning-based CS sampling-reconstruction approaches.

Methods Matrix
Learnability

Deblocking
Ability

CS Ratio
Scalability

CS Ratio
Adaptability

Video-Oriented
Enhancement

ReconNet [55] % % % % %
CSNet+ [56] ! ! % % %

AMP-Net [58] ! ! % % %
OPINE-Net [59] ! ! % % %
DeepBCS [60] ! ! % ! %
DPA-Net [78] % ! % % %

ISTA-Net++ [80] % ! ! % %
FSOINET [81] ! ! % % %

DPC-DUN [82] % ! % % %
COAST [84] ! ! % ! %
CASNet [86] ! ! ! ! %
MRVCS [90] % % % ! !
VCSL [92] % ! % ! !

JVCSR [100] ! ! % % !

7. Challenges and Future Scope

The contemporary landscape in data generation is characterized by an unprecedented
surge, placing substantial demands on sensing, storage, and processing devices. This
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surge has led to the establishment of numerous data centers worldwide, grappling with
the immense volume of data and resulting in the substantial power consumption during
acquisition and processing. The escalating data production underscores the urgent need for
innovative concepts in both data acquisition and processing. The emergence and growing
popularity of CS have emerged as a substantial contributor to addressing this burgeoning
issue, presenting a paradigm shift in how data are acquired, transmitted, and processed.

However, despite its transformative potential, CS encounters a spectrum of challenges
and opportunities that warrant a closer examination. The advent of deep neural networks
and transformers has given rise to a plethora of learning-based CS algorithms, aimed
at achieving superior reconstruction quality. Nevertheless, a notable hurdle lies in the
successful implementation of these algorithms in hardware due to the substantial size of
the network models. The practical deployment of these algorithms on hardware platforms
remains limited, hindering the widespread adoption.

Recent research has recognized the need to balance reconstruction quality with the
size of models and processing speed, leading to the development of models that prioritize
reduced parameters while maintaining high-quality reconstruction results [81,82]. These
endeavors address the practical requirements for real-world applications, particularly
in resource-constrained environments. The pursuit of smaller models with preserved
reconstruction efficacy emerges as a pivotal research direction for the future, offering
promising avenues for practical implementation. Anticipating the continued advancement
of technology, the deployment of more optimized CS algorithms across diverse hardware
platforms is expected to gain traction. This optimism stems from the ongoing efforts to
strike a balance between computational efficiency and reconstruction quality, making CS
increasingly applicable in a variety of real-world scenarios.

Beyond conventional applications, the exploration of CS in light field imaging holds
immense promise [101–104]. Light field imaging, renowned for its capability to capture
multiple light ray directions and intensities for each point in a scene, seamlessly aligns with
the fundamental principles of compressive sensing. This harmonious integration allows
for a more efficient harnessing of additional information, thereby enriching the detailed
and comprehensive perception of a scene. Furthermore, the reduction in data acquisition
requirements achieved through CS in light field imaging introduces significant advantages.
This is particularly noteworthy in scenarios involving resource-constrained systems such
as sensor networks or mobile devices. The synergy between CS and light field imaging not
only enhances the overall quality of the scene perception but also contributes to addressing
challenges related to limited resources, paving the way for innovative applications and
advancements in these domains.

On the other hand, since the work of [105] had been proposed, several CS systems
using chaos filters have been developed recently [106–108]. In general, the chaotic CS sys-
tem is designed to achieve simultaneous compression and encryption. The encryption can
provide many significant features, such as security analysis and statistical attack protection,
and uses the parameters as the secret key in the reconstruction of the measurement matrix
and masking matrix. The advantages of employing chaotic CS systems might surpass the
additional algorithmic consumption, given the reduced data transmission requirements.
However, the impact on performance under the scenario of a microcontroller operating at
a higher frequency, and consequently exhibiting increased consumption, remains an area
that requires further investigation in the future. Last but not least, CS, with its capability to
substantially reduce the data representation size while preserving essential information,
holds promising prospects for applications in many high-level vision tasks, such as object
detection [109,110], semantic segmentation [111], and image classification [112,113]. It is
imperative to underscore that the potential of CS in these domains is far from fully realized,
and there exists substantial room for further advancements and breakthroughs.
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8. Conclusions

In this paper, we provide a comprehensive overview of compressive sensing in image
and video compression, elaborating it through the lenses of sampling, coding, reconstruc-
tion, and codec optimization. Our exploration begins with a detailed discussion of sampling
methods, with a particular emphasis on the design of measurement matrices tailored for
superior reconstruction quality and optimized for enhanced measurement coding efficiency.
We delve into the intricacies of measurement coding, elucidating various approaches such
as intra prediction, inter prediction, and rate control. The paper further introduces a spec-
trum of reconstruction algorithms, encompassing both conventional and learning-based
methods. Additionally, we provide a thorough overview of the holistic optimization of the
compressive sensing codec. Our discussion extends to the current challenges and future
prospects of compressive sensing, offering valuable insights into the evolving landscape
of this technique. We believe that this review has the potential to inspire reflection and
instigate further exploration within the image and video compression research community.
It lays the groundwork for future investigations and applications of compressive sensing in
this field.
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