Model Optimization and Dynamic Analysis of Inventory Management in Manufacturing Enterprises
Abstract
:1. Introduction
2. Literature Discussion and Research Methods
2.1. Literature Discussion
2.2. Research Methods
3. Static Model of Inventory Management
3.1. Theoretical Framework Model and Data Sources
3.2. Preliminary Analysis of Model Variables
3.3. Static Mathematical Model and Regression Analysis
4. Dynamics Model of Inventory Management
5. Dynamics Analysis
5.1. 0-1 Test and Bifurcation
5.2. Largest Lyapunov Exponent (LLE)
5.3. System Eigenvalue Trajectory Plot
5.4. Two-Parameter Variation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- clc
- clear all
- global q p
- %systems parameter
- r = 0.72;
- s = 0.58;
- L = 501;%length
- % range of parameter changes
- Q = linspace (0.05,0.07,L);
- P = linspace (0,0.05,L);
- SE = zeros (L,L);
- for i = 1:L
- q = Q(i);
- for j = 1:L
- p = P(j);
- % initial conditions
- y (1) = 1.1;
- z (1) = 2.1;
- j11 (1) = 1;
- j12 (1) = 0;
- j21 (1) = 0;
- j22 (1) = 1;
- for n = 1:6000
- y (n + 1) = q ∗ (s + p ∗ z (n)) + r ∗ y (n) ∗ z (n);
- z (n + 1) = 1 − (s + p ∗ z (n)) − y (n) + z (n);
- %%Jacbian
- j1 = r ∗ z (n);
- j2 = r ∗ y (n) + q ∗ p;
- j3 = −1;
- j4 = −p + 1;
- j11 (n + 1) = j1 ∗ j11 (n) + j2 ∗ j21 (n);
- j12 (n + 1) = j1 ∗ j12 (n) + j2 ∗ j22 (n);
- j21 (n + 1) = j3 ∗ j11 (n) + j4 ∗ j21 (n);
- j22 (n + 1) = j3 ∗ j12 (n) + j4 ∗ j22 (n);
- end
- J = [j11 (end),j12 (end);j21 (end),j22 (end)];
- z1 = max(abs(eig (J)));
- LLE (i,j) = log(abs (real (z1)))/1000;
- end
- end
- [X,Y] = meshgrid (Q,P);
- figure (1)
- colormap(flipud (jet));
- contourf (X,Y,LLE);
- xlabel (‘p’)
- ylabel (‘q’)
References
- Qian, Z.; Wang, C.X.; Yang, H. Association between corporate diversification strategies and inventory performance: A firm-level investigation. Int. J. Oper. Prod. Manag. 2024. [Google Scholar] [CrossRef]
- Wan, X.; Britto, R.; Zhou, Z. In search of the negative relationship between product variety and inventory turnover. Int. J. Prod. Econ. 2020, 222, 107503. [Google Scholar] [CrossRef]
- Halat, K.; Hafezalkotob, A. Modeling carbon regulation policies in inventory decisions of a multi-stage green supply chain: A game theory approach. Comput. Ind. Eng. 2019, 128, 807–830. [Google Scholar] [CrossRef]
- Žic, J.; Žic, S.; Đukić, G.; Dabić-Miletić, S. Exploring Green Inventory Management through Periodic Review Inventory Systems—A Comprehensive Literature Review and Directions for Future Research. Sustainability 2024, 16, 5544. [Google Scholar] [CrossRef]
- Qu, S.; Zhou, Y.; Ji, Y.; Dai, Z.; Wang, Z. Robust maximum expert consensus modeling with dynamic feedback mechanism under uncertain environments. J. Ind. Manag. Optim. 2024, 21, 524–552. [Google Scholar] [CrossRef]
- Engebrethsen, E.; Dauzère-Pérès, S. Transportation mode selection in inventory models: A literature review. Eur. J. Oper. Res. 2019, 279, 1–25. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, K.; Yuan, Y. Spare Parts Inventory Management: A Literature Review. Sustainability 2021, 13, 2460. [Google Scholar] [CrossRef]
- Vastag, G.; Whybark, D.C. Inventory management: Is there a knock-on effect? Int. J. Prod. Econ. 2005, 93–94, 129–138. [Google Scholar] [CrossRef]
- Eroglu, C.; Hofer, C. Lean, leaner, too lean? Chopra The inventory performance link revisited. J. Oper. Manag. 2010, 29, 356–369. [Google Scholar] [CrossRef]
- Burawat, P. The relationships among transformational leadership, sustainable leadership, lean manufacturing and sustainability performance in Thai SMEs manufacturing industry. Int. J. Qual. Reliab. Manag. 2019, 36, 1014–1036. [Google Scholar] [CrossRef]
- Buisman, M.E.; Rohmer, S.U.K. Inventory dynamics at the retailer—An economic and environmental analysis of packaging fresh produce. Sustain. Anal. Model. 2023, 3, 100020. [Google Scholar] [CrossRef]
- Yao, H.; Sheng, Z. An improved feedback control method in economic chaos model. J. Syst. Eng. 2002, 6, 507–511+518. [Google Scholar]
- Chen, G.; Yao, H.; Sheng, Z. Synchronous control of chaotic system in inventory management. Forecast 2003, 22, 38–41+24. [Google Scholar]
- Lei, T.; Li, R.Y.M.; Fu, H. Dynamics Analysis and Fractional-Order Approximate Entropy of Nonlinear Inventory Management Systems. Math. Probl. Eng. 2021, 2021, 5516703. [Google Scholar] [CrossRef]
- Yuan, L.; Yang, X.; Zhong, R. Fractional-order approximate entropy algorithm. J. Xi’an Univ. Technol. 2020, 36, 575–580. [Google Scholar]
- Lei, T.; Li, R.Y.M.; Jotikastira, N.; Fu, H.; Wang, C. Prediction for the Inventory Management Chaotic Complexity System Based on the Deep Neural Network Algorithm. Complexity 2023, 2023, 9369888. [Google Scholar] [CrossRef]
- Lei, T.; Li, R.Y.M.; Deeprasert, J.; Fu, H. Dynamics and Complexity Analysis of Fractional-Order Inventory Management System Model. Fractal Fract. 2024, 8, 258. [Google Scholar] [CrossRef]
- Yigit, F.; Easnaf, S. A new fuzzy C-means and AHP-based three phased approach foumultiple criteria ABC inventory classificatigon. J. Intell. Manuf. 2021, 32, 1517–1528. [Google Scholar] [CrossRef]
- Perez, H.D.; Hubbs, C.D.; Li, C.; Grossmann, I.E. Algorithmic Approaches to Inventory Management Optimization. Processes 2021, 9, 102. [Google Scholar] [CrossRef]
- Zhong, Z.; Yuan, M.; He, Z. Data-Driven Algorithms for Two-Location Inventory Systems. Systems 2024, 12, 153. [Google Scholar] [CrossRef]
- Bendig, D.; Strese, S.; Brettel, M. The link between operational leanness and credit ratings. J. Oper. Manag. 2016, 52, 46–55. [Google Scholar] [CrossRef]
- Chen, G.; Li, X. Research on the Impact Mechanism of Lean Inventory Management on Corporate Performance from an Innovation Perspective: The Mediating Effect of Management Innovation. Sci. Technol. Manag. Res. 2019, 39, 207–214. [Google Scholar]
- Wang, C.; Zhang, J.; Ma, J. The Impact of Lean Inventory Management on Firm Performance—Empirical Evidence from Chinese Listed Manufacturing Firms. Manag. Rev. 2017, 29, 165. [Google Scholar]
- Centobelli, P.; Cerchione, R.; Singh, R. The impact of leanness and innovativeness on environmental and financial performance: Insights from Indian SMEs. Int. J. Prod. Econ. 2019, 212, 111–124. [Google Scholar]
- Gottwald, G.A.; Melbourne, I. The 0-1 test for chaos: Areview. In Chaos Detection and Predictability; Springer: Berlin/Heidelberg, Germany, 2016; pp. 221–247. [Google Scholar]
- He, S.; Sun, K.; Peng, Y. Detecting chaos in fractional-order nonlinear systems using the smaller alignment index. Phys. Lett. A 2019, 383, 2267–2271. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Yu, W.; Lei, T.; Li, R.Y.M. Symmetric Pseudo-Multi-Scroll Attractor and Its Application in Mobile Robot Path Planning. Symmetry 2024, 16, 868. [Google Scholar] [CrossRef]
- Lei, T.; He, J.; Wang, Y.; Zang, H.; Huang, L.; Fu, H. Analysis of fractional order nonlinear system based on Adomian decomposition method and realization of Lyapunov exponent algorithm. J. Vib. Shock. 2021, 40, 1–6. [Google Scholar]
- Fu, H.; Lei, T. Adomian Decomposition, Dynamic Analysis and Circuit Implementation of a 5D Fractional-Order Hyperchaotic System. Symmetry 2022, 14, 484. [Google Scholar] [CrossRef]
- Haiyan, F.; Tengfei, L.; Miaomiao, X.; Feng, C.; Minglei, J.; Tingyang, Y. Identification and Analysis of Tool Wear Signal in CNC Machine Tool Based on Chaos Method. In Proceedings of the 2021 IEEE International Conference on Prognostics and Health Management (ICPHM), Detroit (Romulus), MI, USA, 7–9 June 2021; pp. 1–5. [Google Scholar]
- Luo, L.; Li, Y.; Li, T.; Dong, Q. Research and simulation of Lyapunov’s exponents. Comput. Simul. 2005, 22, 285–288. (In Chinese) [Google Scholar]
- Li, Y.; Li, C.; Tang, Q.; Gao, Y.; Lei, T. Various Dynamics of Amplitude Regulation Within a Class of 3D Rulkov Neurons. In IEEE Transactions on Circuits and Systems I: Regular Papers; IEEE: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
Variable | Mean | Std | Max | Min |
---|---|---|---|---|
Return on Assets (ROA) | 3.3653 | 8.3166 | 78.5865 | −216.0298 |
Return on Equity (ROE) | 3.3602 | 28.8872 | 232.3628 | 1115.4 |
Inventory Turnover (IT) | 4.428 | 4.0441 | 53.8295 | 0.0305 |
Company Size (S) | 22.2971 | 1.2173 | 27.6400 | 17.9500 |
Company Age (A) | 21.6039 | 5.7632 | 67 | 4 |
Variable | ROA | ROE | IT | S | A |
---|---|---|---|---|---|
ROA | 1 | ||||
ROE | 0.6849 *** | 1 | |||
IT | 0.030 | 0.0116 * | 1 | ||
S | 0.1270 *** | −0.1193 *** | 0.1273 *** | 1 | |
A | −0.0457 *** | −0.0186 ** | 0.0758 *** | 0.1464 *** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, T.; Li, R.Y.M.; Deeprasert, J. Model Optimization and Dynamic Analysis of Inventory Management in Manufacturing Enterprises. Information 2024, 15, 785. https://doi.org/10.3390/info15120785
Lei T, Li RYM, Deeprasert J. Model Optimization and Dynamic Analysis of Inventory Management in Manufacturing Enterprises. Information. 2024; 15(12):785. https://doi.org/10.3390/info15120785
Chicago/Turabian StyleLei, Tengfei, Rita Yi Man Li, and Jirawan Deeprasert. 2024. "Model Optimization and Dynamic Analysis of Inventory Management in Manufacturing Enterprises" Information 15, no. 12: 785. https://doi.org/10.3390/info15120785
APA StyleLei, T., Li, R. Y. M., & Deeprasert, J. (2024). Model Optimization and Dynamic Analysis of Inventory Management in Manufacturing Enterprises. Information, 15(12), 785. https://doi.org/10.3390/info15120785