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Abstract: Due to the significant uncertainty of charging time and charging power consumption, the
large increase in plug-in electric vehicles (PEVs) may create a major influences on the power system:
According to people’s living habits, PEVs are basically charged during peak load periods (after work).
Once PEVs continue the random charging behavior, there will be a higher difference of peak-valley
and bigger burden on the grid. A new strategy is put forward for dynamic economic/emission
dispatch (DEED) with the consideration of PEVs for the purpose to shave the peak and fill the
valley in this paper, and the influences brought from different loads of grid-to-vehicle (G2V) and
vehicle-to-grid (V2G) on DEED problem are discussed. The problem to be solved is a challenging
multi-objective non-linear problem. By taking advantage of the differential evolution (DE) algorithms
and a newly developed crisscross optimization algorithm, a new multi-objective hybrid optimization
algorithm is put forward to deal with the problem including effectively dealing with the inequality
and equality constraints. A case study is presented to show the feasibility and effectiveness of the put
forward method. The analysis results demonstrate that the put forward algorithm could effectively
solve DEED problem, showing that the resulting approach of peak shaving and valley filling could
significantly save economic costs and reduce emissions under the same load.

Keywords: dynamic economic/emission dispatch (DEED); multi-objective optimization; differential
evolution; crisscross optimization; plug-in electric vehicles (PEVs)

1. Introduction

Economic dispatch (ED) is a kind of the key problems for power systems, whose purpose is to
look for the optimal scheduling of generators to make the economic cost minimum. As more and
more attention has been paid to the environment, emission is to be taken into account as part of ED.
This leads to the research on economic emission dispatch (EED). EED is only focused on the optimal
scheduling for a certain period of time (usually 1 h) actually, whereas the DEED focus on the whole
dispatching periods of time to make the total economic cost and pollution emissions minimum with
consideration of certain constraints [1–4].

The DEED problem considering the valve point effect is a complex optimization problem
characterized by nonlinearities, severe constraints, and multi-peaks. In the literatures, various
traditional mathematical methods [5–9] such as non-linear programming (NLP), Lagrange Relaxation
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(LR) for solving the DEED problem have been proposed. Many traditional methods have several
limitations it requires that the objective functions should be differentiable and the problem domain
should be convex. Thus, these traditional mathematical methods are not appropriate to deal with
non-convex, non-smooth, and multi-objective problems such as DEED problem. To overcome the
limitation of the traditional methods, modern heuristic algorithm such as DE algorithm [10], bat
algorithm [11], and harmony search (HS) [12] are employed to deal with the complex DEED problem.
One advantage of heuristic methods for solving DEED problem is that the models of the operation
constraints becomes more practical. Different from traditional methods mentioned above, heuristic
methods do not require the objectives and constraints to be continuous and differentiable. Therefore,
high quality solutions could be obtained. However, the solutions generated by heuristics optimization
methods may be trapped into premature on account of the shortcomings in balancing the local
exploitation and global exploration. Therefore, to overcome the dilemma, combinatorial optimization
algorithms which integrate two or more optimization strategies have been put forward to make the
global searching ability improved and convergence rate accelerated. For example, in recent years,
different hybridization algorithm such as hybrid bat algorithm [11], multi-objective stochastic search
technique (MOSST) [13], hybrid DE-PSO [14], hybrid bare-bones PSO (BBPSO) [15], hybrid bee colony
optimization algorithm [16], hybrid DE (HDE) [17] have been introduced to obtain better quality
solutions. At present, many intelligent optimization algorithms and hybrid optimization algorithms
could be applied to handle complex problems. Choose the appropriate algorithm based on the
actual problem and they may have achieved good results. For example, an improved estimation
of distribution algorithms (EDAs) proposed in [18] has good performance in dealing with complex
problems; reference [19] put forward a novel intelligent optimization namely Ideal gas optimization
algorithm and its superiority has been proved; reference [20] put forward an improved island-based
Cuckoo search that enhances the diversity of population and global search ability, and has good
convergence ability; reference [21] proposed several improved algorithms and applied them to the
optimization of fuzzy controllers in servo systems. Compared with the single algorithm, a combinatorial
optimization method may require more time to calculate and involves more parameters, but it could
take advantage of each single algorithm to lead to a good optimal solution. Thus, it is significant and
essential to evolve new hybrid algorithms for better solving the DEED problem.

As global energy issues become more serious, primary energy sources dominated by petroleum
resources are increasingly depleted, greenhouse effect and air pollution are getting worse, governments
have realized the importance of energy conservation and emission reduction for the sustainable
development of human society. Due to the high energy efficiency, low carbon and noise pollution
and low operating costs [22,23], plug-in electric vehicles (PEVs) have gained extensive attention and
becomes an indispensable part to solve energy and environmental problems. However, the growing
number of PEVs would further increase the difference of peak-to-valley, the stochastic charging
behavior of PEVs will result in additional load requirements [24,25]. Therefore, it is urgent to solve the
dispatch issue of PEVs and to formulate an optimal dispatch scheme for the power system. In [26,27],
PEVs act as a reserve to help to reduce and regulate the load. In [28], the influence of PEVs on the load
curve and economic cost was discussed. In [29,30], it showed that fossil fuel vehicles would be replaced
by PEVs of potentially flexible load demand by reducing exhaust emissions. In [31], the framework,
advantages and challenges of V2G technology, as well as the main methods to implement V2G
technology under satisfying various constraints were summarized. In [32], a DEED model considering
the large penetration of PEVs was put forward, and the adaptive multi-objective DE algorithm had
been put forward to deal with the model. However, environmental factors were only considered as
constraints, and only the scenario of PEVs charging was considered in the model. In [33], a self-learning
teaching-learning based optimization (SL-TLBO) strategy had been introduced to deal with DEED
problem with the consideration of PEVs loads. However, only four charging scenarios were considered
in the SL-TLBO method, and it neglects the fact that PEVs have the ability of peak shaved and valley
filled. In [34], the DEED problem considering PEVs was investigated, and an optimal scheduling result
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was produced, however, the difficulty of controlling the random charging/discharging behaviors of
PEVs does not need to be considered. In [35], a new type of valley filling strategy was proposed, which
used PEVs to centrally coordinate charging. Moreover, a decentralized PWM-based algorithm was
introduced in [36] to coordinate PEV charging to make the total load curve smooth. However, the
proposed strategies in [35,36] only consider the V2G technology and ignore the G2V technology. In [37],
in order to alleviate concerns about battery lifetime, the PEVs were presented to act as distributed
storage devices. In [38], the purchasing of load transfer service was discussed by optimizing dispatch
of the charging and discharging of PEVs using the decentralized way.

This paper aims to establish a dynamic economic/emission scheduling model with the consideration
of PEVs for the purpose to shave peak and fill valley, these influences of PEVs on economic cost and
emissions are analyzed. More specifically, a new multi-objective algorithm framework, developed
according to a hybrid method, combining a DE algorithm and a recent CSO algorithm is put forward
to solve DEED problem with the consideration of penetration of PEVs; a repair technique is put
forward to deal with various constraints efficiently. For simplicity of presentation, the proposed
approach is referred to as multi-objective differential evolution and crisscross optimization (MODECSO).
Experiments on a 5-unit system are carried out to prove the feasibility and effectiveness of the put
forward strategy. The results illustrate that the put forward MODECSO algorithm can generate
well distributed Pareto optimal solution of DEED, verifying that the peak shaving and valley filling
methods of PEVs can effectively reduce operating costs and emissions of polluting gases under the
same load conditions.

The key contributions are summarized as follows:

• In optimization model of the dynamic economic/emission multi-objective dispatching problem,
the PEVs are considered for the purpose to achieve peak shaving and valley filling. According to
the put forward model, DEED problem with consideration of PEVs is surveyed. Currently, there is
very limited work being done for solving the DEED problem considering PEVs to shave peak
and fill valley, particularly on the research of influence on DEED problem brought from different
G2V and V2G demands. This is a multi-peak and nonlinear multi-objective optimization problem.
In existing work, DEED considered with PEVs only studies the scheduling of PEVs, the effect of
G2V and V2G technologies do not need to be considered. The load shaved during peak period is
distributed to each PEV, and in order to implement valley filling, a water-filling algorithm [36] has
been employed. As a result, a new 24-h load curve would be produced for the DEED problem.

• A new application of the hybrid heuristic algorithm integrating CSO and DE is presented for robust,
efficient, and accurate optimization of the DEED involving PEVs. A new multi-objective differential
evolution and crisscross optimization (MODECSO) is put forward. MODECSO has the following
properties. (1) The elitist reservation strategy and crowding entropy and fuzzy-based mechanism
are employed to generate the Pareto optimal front (POF) that overcomes the shortcomings of
the weighted sum strategy. (2) For the purpose to make convergence rate accelerated, the global
optimal quantity is introduced to improve the horizontal crossover operator. (3) A new adaptive
parameter method with self-learning ability is put forward. By using this strategy, there is no
need to try out appropriate mutation and crossover constant for each optimization problem, and
the algorithm can evolve to suitable control parameter values automatically according to the
evolution process.

• Some infeasible solutions may carry important information that is useful for finding the optimal
solutions. To ensure the diversity of the offspring, a repair technique is proposed to deal with the
constraints to avoid discarding useful infeasible solutions. During the optimizing process, instead
of penalty function, the heuristic constraint handling method is used in solving various constrains
effectively. Moreover, it does not need to select penalty factors as well as any other parameters,
besides it also could direct these infeasible solutions into the feasible domain.
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2. The Dynamic Economic/Emission Dispatch Model with Consideration of Plug-In
Electric Vehicles

2.1. Objective Functions

Two types of objective functions, called, fuel cost and pollution emission, are considered, which
are described in detail as follows.

(1) Fuel cost: The objective function of fuel cost of generators is decided according to their active
output. However, the opening of intake valve of steam turbine suddenly would result in valve point
effect [22], the accuracy of solution would be affected if it is ignored. When such a nonlinear factor is
considered, the objective function of fuel cost F f [39] is shown as follows:

F f =
N∑

i=1

T∑
t=1

{
aiP2

i,t + biPi,t + ci+
∣∣∣∣ei sin

[
fi
(
Pmin

i − Pi,t
)]∣∣∣∣} (1)

where N is the number of units, T is an entire scheduling period, ai, bi, ci, ei and fi are the cost coefficients
of the ith unit, Pi,t is the active output of the ith unit at the tth period, and Pmin

i is the minimum active
output of the ith unit.

(2) Emission amount function: The emission function of various pollution gases is shown as
follows [40–42]:

Fe =
N∑

i=1

T∑
t=1

[
αi + βiPi,t + γi(Pi,t)

2+ ξi exp(λiPi,t)] (2)

where αi, βi, γi, ξi, λi are the emission coefficients of the ith unit.

2.2. Constraints

This study considers the following six constraints.

(1) Active power limits:
Pmin

i < Pi < Pmax
i (3)

(2) Power balance constraints:
Power balance equation for each scheduling period with consideration of both the discharging

and charging behavior of PEVs can be shown as:

N∑
i=1

Pi,t + Pdisch,t − PDt = Ploss,t + Pch,t (4)

where Pch,t is the charging load and Pdisch,t is the discharging power during the tth period, respectively.
PDt is the power load demand and Ploss,t is the system losses during the tth period, shown as
follows [43]:

Ploss,t =
N∑

i=1

N∑
j=1

Pi,t × Bi, j × P j,i (5)

where the Bi j is the transmission network loss coefficients.

(3) Ramp rate limits:
Pi,t − Pi,t−1 < URi (6)

Pi,t−1 − Pi,t < DRi (7)

where URi and DRi are the ramp rate of the ith generator.

(4) Battery storage capacity limit:
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For the purpose to guarantee the battery life and operational safety, the remaining capacity SOC(t)
must meet the following requirement.

SOCmin < SOC(t) < SOCmax (8)

where SOCmin is the lower limitation of battery power, SOCmax is the upper limitation of battery power.

(5) Charging and discharging power constraints of PEVs:

Pdisch, j,t ≤ Pmax
disch, j (9)

Pch, j,t ≤ Pmax
ch, j (10)

where Pmax
disch,i and Pmax

ch,i represent the maximum discharging power and charging load of the jth PEV.

(6) Power balance constraints of PEVs:

SOCt = SOCt−1 + ξc × Pch,t × ∆t−
Pdisch,t

ξD
× ∆t−D× ∆S (11)

where ξc represents the charging efficiency and ξD represents the discharging efficiency, ∆t is the
scheduling period, D is the driven distance, and ∆S is the average power consumption per unit distance.

2.3. Problem Formulation

The DEED problem is a dynamic multi-objective non-convex complicated problem characterized
by nonlinearities, severe constraints, and multi-peaks. Making the economic cost minimum and
making the total emission of pollution gases minimum, as the two purposes of the DEED problem, are
mutually competing. Integrating the objective functions and constraints, the mathematical model of
DEED is expressed as follows:

min [F f (x), Fe(x)]

st :
{

g(x) = 0
h(x) ≤ 0

(12)

where g(x) and h(x) represent equality constraints and inequality constraints, respectively.

2.4. Constraints Handling

The DEED characterized by multi-peak, non-linearity and severe constraint, is a dynamic
non-convex complicated optimization problem [44]. Some updated solutions are difficult to satisfy
all the constraints, they may be usually not feasible in the early period, which is not conducive to
the exploration and exploitation for the feasible domains. Even if some solutions are feasible in
this generation, they turn into unfeasible after crossover operator and mutation operator in the next
generation. When considering various constraints, especially equality constraints, this situation would
be much worse. To solve this difficulty, a repaired technique is put forward for the infeasible solutions to
promote them to move into the feasible domains. The implementation procedure the repair technique
put forward has been presented as follows:

Step 1: The decision variables are arranged into matrix form:

P =


P1

1 P1
2 · · · P1

N
P2

1 P2
2 · · · P2

N
· · · · · · · · · · · ·

PT
1 PT

2 · · · PT
N


where Pt

n represents the active output of the nth unit at the tth time interval.
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Step 2: Suppose that the dispatching process begins with the first time period, thus set t = 1.

Considering the both constraints of the ramp rate limits and generator capacity, two boundary
values are used for each generator during the tth time period, which are given by:

Pmax
i,t =

 Pmax
i if t== 1

min
[
Pmax

i , (Pi,t−1 + URi)
]

otherwise
(13)

Pmin
i,t =

 Pmin
i if t== 1

max
[
Pmin

i , (Pi,t−1 −DRi)
]

otherwise
(14)

Step 3: Check feasibility of the updated candidate solution at the tth time as follows:

∣∣∣∣∣∣∣δ =
N∑

i=1

Pi,t − Ploss,t − PDt

∣∣∣∣∣∣∣ ≤ ε (15)

Here, ε is a tolerance limit. If the solution satisfies the constraint, end Step 3; otherwise, carry out
Step 3.1.

Step 3.1: Set the cycle number kmax and start the loop.
Step 3.2: Randomize all generator numbers, and make a small contribution to all generators.

P(t, Rg(q)) = P(t, Rg(q)) + δ (16)

where Rg is a random sort of all generators (q = 1, 2, . . . , N). Check that the updated candidate solution
exceeds the upper and lower limits. If the updated solution exceeds the lower limit:

δ = P(t, Rg(q)) − Pmin
t (Rg(q))

P(t, Rg(q)) = Pmin
t (Rg(q))

(17)

If the updated solution exceeds the upper limit:

δ = P(t, Rg(q)) − Pmax
t (Rg(q))

P(t, Rg(q)) = Pmax
t (Rg(q))

(18)

Step 3.3: Carry out the next generator until all generators have completed the process.
Step 3.4: Recheck the feasibility of the repaired solution. If the solution satisfies the constraint, stop

at Step 3, otherwise check if the number of loops reaches the maximum threshold kmax. Terminate the
equation repair process if iteration reaches the preset maximum number, otherwise return to Step 3.2.

Step 3.5: If the iteration reaches the pre-scheduled number, and the solution is still infeasible, then
the solution is initialized and proceeds directly to the next step.

3. The Proposed Approach

The proposed optimization algorithm MODECSO and the strategy of PEV of the purpose to shave
the peak and fill the valley are described. As mentioned above, the dispatch results of the power
system largely depend on the load demand. The large-scale PEVs are permeated to the grid, if they are
not under control, the peak-to-valley difference will be directly intensified, and thus would impose
a negative effect on power system scheduling. However, it can be improved if the appropriate PEV
dispatch method is implemented. V2G and G2V technologies are employed to shave the peak and
fill the valley in this paper. During the peak period, the remaining power reserved in PEV battery is
transmitted to the grid by V2G technology. During the valley period, the valley filling is achieved by
charging the PEVs.
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3.1. The Proposed Algorithm

3.1.1. Crisscross Optimization Algorithm

The CSO algorithm is a novel swarm optimization algorithm put forward by Meng et al. [45].
Different from other artificial intelligence algorithms, CSO consists of two search mechanisms, called
horizontal crossover operator and vertical crossover operator. The two operators complete search task
in coordination with the competition operator.

(1) Horizontal crossover:

Horizontal crossover is a crossover of the same dimension of the paired individuals. The parent
individual Xi is executed the horizontal crossover with parent individual X j at the dth dimension, the
offspring MShc can be expressed as: MShc(i, d) = r1 ×Xi,d + (1− r1) ×X j,d + c1 ×

(
Xi,d −X j,d

)
MShc( j, d) = r2 ×X j,d + (1− r2) ×Xi,d + c2 ×

(
X j,d −Xi,d

) (19)

where ri (i = 1, 2) is random values within [0, 1]. c1, c2 are expansion coefficients within [−1, 1].

(2) Vertical crossover:

Different from the horizontal crossover operator, the vertical crossover is a crossover between two
different dimensions in one individual. MSvc(i, d1) can be expressed as:

MSvc(i, d1) = r×Xi,d1 + (1− r) ×Xi,d2 (20)

where di(i = 1, 2) is dimension of the ith individual, r is random values within [0, 1].

(3) Improved horizontal crossover

In our work, an improvement is done on the horizontal crossover operator in order to make the
convergence rate accelerated. All the individuals are pairwise coupling randomly. According to the
fitness value, each pair is divided into two categories, namely winners and inferiors. The inferior
individual carries out the horizontal crossover with the winner individual, and by introducing the
global optimal solution, the winner individual carries out horizontal crossover with the global optimal
solution instead of inferior individual, showing in the equation below:

if f it(X j) < f it(Xi) MShc(i, d) = r1 ×Xi,d + (1− r1) ×X j,d + c1 ×
(
Xi,d −X j,d

)
MShc( j, d) = r2 ×X j,d + (1− r2) ×Xgbest,d + c2 ×

(
X j,d −Xgbese,d

) (21)

where Xgbest,d is the global optimal solution.

3.1.2. Differential Evolution Algorithm

DE algorithm is a random optimization algorithm put forward by Rainer and Price [46].
Three important operators are consisted in DE, namely mutation, crossover, and selection operator.

(1) Mutation operator:

For each target individual Xg
i = (xg

i,1, xg
i,2, · · · , xg

i,n), the corresponding mutation vector

Vg
i = (vg

i,1, vg
i,2, · · · , vg

i,n) is decided by:

Vg
i = Xg

r1 + F(Xg
r2 −Xg

r3) (22)
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where g is the evolutionary generation, F is the mutation constant within [0, 1], r1, r2 and r3 are the
individual indexes which is different from each other, and selected from the population randomly.

(2) Crossover operator:

For each mutation vector Vg
i , a candidate individual Ug

i = (ug
i,1, ug

i,2, · · · , ug
i,n) is generated according

to the following rule.

ug
i, j =

 vg
i, j, rand j ≤ CR or j = randni

xg
i, j, rand j > CR or j , randni

 (23)

where CR is a cross probability constant within (0, 1), randni ∈ (1, 2, . . . , n) is a randomly selected index
of variables.

(3) Selection operator:

In the selection process, the DE algorithm adopts the greedy mechanism, and only the individual
with good fitness enters the next generation.

The DE’s performance is often decided by the choice of control parameters. Thus, an adaptive
parameter method with self-learning ability [47] has been applied. Initially, the control parameters
of F and CR for each solution are randomly generated in [0, 1] expressed as Figure 1, respectively.
To generate new solutions,

.
Fi and

.
CRi are calculated as Equations (24) and (25). If the fitness of parents

is less than the offspring, the parents and the parent’s control parameters F and CR will be replaced
by the offspring and the offspring’s control parameters

.
F and

.
CR. In the end, only individuals with a

favorable fitness value and the corresponding control parameters can be retained to the next-generation
as follows:

Fi = Fr1 + rand× (Fr2 − Fr3) (24)

CRi = CRr1 + rand× (CRr2 −CRr3) (25)
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3.2. Optimization Strategy

In the proposed model, due to the two objective functions restricted and contradicting with
each other, it is not possible to exist a set of solutions that make them obtain the optimal solution
simultaneously. Therefore, the Pareto optimal solution would be preferred to solve the multi-objective
optimization problem. What’s more, the elitist reservation strategy, crowding entropy and fuzzy-based
mechanism are applied to generate the POF and extract the best compromise solution.

3.2.1. The Elitist Reservation Strategy

Initially, the empty external archive with a certain size is created. The individuals with better
performance are kept in the external archive created. As evolution progresses, the offspring generated
by evolution are compared with all individuals in the current archive, and only the solutions with better
performance can survive to the archive. Only three cases would be produced when the newly generated
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solution compares with the current archive: (1) if a member or members of the archive dominate the
newly generated solution, the newly generated solution is rejected; (2) if a member or members of
the archive is dominated by the newly generated solution, the dominated solutions in the archive are
deleted and the newly generated solution joins in the archive; and (3) newly generated solutions and
all the archive members are not dominated by each other, the newly generated solution joins in the
archive. Whether the newly generated solution enters the archive or not is decided according to the
three rules.

3.2.2. Crowding Entropy-Based Diversity Measure

In order to determine the density of a solution, the crowding distance [48] and distribution entropy
have been taken into adequate account at the meantime. Based on the above discussion, combined with
distribution entropy and the crowding distance, the crowding entropy [47] is employed to calculate
the crowding degree accurately. The distribution of a solution on each objective can be well described
by the entropy concept.

The distribution entropy of the ith solution associated with the jth objective is shown as follows:

Ei, j = −
[
pli j log2

(
pli, j

)
+ pui j log2

(
pui, j

)]
(26)

pli j =
dli j

ci j
(27)

pui j =
dui j

ci j
(28)

ci j = dli j + dui j (29)

where dli j is the distances of the ith solution to its lower neighbor solution on the jth objective, and
dui j is the distances to its upper neighbor solution. Note that although the distribution of the solution
can be correctly described by the distribution entropy, the crowding degree of the solution cannot be
reflected exactly. The crowding entropy can be expressed as follows:

CEi =
k∑

j=1

ci, jEi j

f max
j − f min

j

= −
k∑

j=1

dli j log2

(
pli, j

)
+ dui j log2

(
pui, j

)
f max
j − f min

j

(30)

The crowding degree of solutions on each objective space can be accurately reflected by the
crowding entropy.

If the number of solutions in the external archive has been bigger than the set value Nc, the
redundant solution would be removed by calculating the crowded entropy. For the purpose to maintain
the diversity of solutions, a “del” phase-out strategy is adopted, whose details are presented in [49,50].
When the solution with the smallest crowded entropy is eliminated every time, the congestion entropy
of the solution of the external archive is recalculated. A Pareto solution could be obtained with the
characteristics of uniform distribution and good diversity by “eliminating” gradually.

3.2.3. Fuzzy Theory

Based on the Pareto optimal set that we get, a Pareto optimal solution is extracted as the best
compromise solution according to the employ fuzzy-based mechanism. In this work, the membership
function is shown as [51]:

ui
m =


1, f m

i ≤ f m,min

f m,max
− f m

i
f m,max− f m,min , f m,min < f m

i < f m,max

0, f m
i ≥ f m,max

(31)
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ui =

Nobj∑
m=1

um
i

Nc∑
i=1

Nobj∑
m=1

um
i

(32)

where f m,min is the minimum value and f m,max are the maximum value of the mth objective function.
Nobj is the number of objectives and ui is the satisfaction of the ith Pareto optimal solution.

3.3. Multi-Objective Differential Evolution and Crisscross Optimization Algorithm

Owning of the distinctive crossover operator and greedy selection operator, CSO algorithm
displays better global search performance when employed to deal with optimization problems.
However, it has fewer control parameters and the adjustment strategy is simple. For some objective
functions, satisfactory results cannot be obtained. The DE algorithm has fast convergence rate, but it
tends to fall into premature convergence. For the purpose to enhance the performance of algorithm,
an improved CSO is combined with a modified DE algorithm to create a hybrid algorithm called
MODECSO. At the same time, the elitist reservation strategy and crowding entropy are introduced to
form the MODECSO algorithm.

The implementation procedure of MODECSO is detailed as follows:

Step 1: Initialize the population and set the parameters of the algorithm.
Step 2: Compute the fitness function.
Step 3: Create an empty external archive.
Step 4: While iter < Maxiter do.
Step 5: Select a solution in the external archive as global optimal solution randomly.
Step 6: Perform improved horizontal crossover operation.
Step 7: Carry out three operations in the ADE algorithm.
Step 8: Compute the fitness function.
Step 9: Update the whole population and control parameters.
Step 10: Update the external archive according to Sections 3.2.1–3.2.3.
Step 11: Carry out vertical crossover operation.
Step 12: Compute the fitness function.
Step 13: Update the population.
Step 14: Update the external archive according to Sections 3.2.1–3.2.3.
Step 15: End while.

4. Simulation and Analysis

For the purpose to verify feasibility and advantages of the put forward MODECSO algorithm,
three different case studies have been employed to simulate. They are: (a) a 10-unit DEED; (b) a
5-unit DEED considering PEVs for valley filling; and (c) a 5-unit DEED considering PEVs to the shave
peak and fill valley, respectively. Figure 2 displays the proposed MODECSO algorithm flow chart for
solving DEED.
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The system load adopts a 24-h dispatch period. The parameters involved in the multi-objective
MODECSO algorithm have been shown as follows: the maximum number of iterations Gmax sets as
4000, the size of population sets as 100. Initially, the normal distributions which the mean value is
0.5 and standard deviation value is 0.1, is employed to generate F and CR, respectively; the size of
external archive Nc is 50; the value of vertical crossover operator Pv is set as 0.8 [46]. The number
of PEVs sets as 40,000 [52]. All the PEVs are needed to fully charge before 7:00 am and the control
center [31,37,52] would control charging/discharging behaviors of PEVs. The charging efficiency ξc is
0.8 and the discharging ξD efficiency also is 0.8; Smin is 20% and Smax is 90%. The number of PEVs
required is calculated as follows: At periods 11th and 12th, the load data in Table 1 appears the peaks.
If the load during the 10th period is selected as the basis for the peak shift, then the total load that
peak shaved is 52 MW. It is assumed that travel distance of each PEV is 40 km/day, in other words, the
consumption SOC of each PEV is 0.25. Then, for each PEV, it may be that the SOC is V2G scheduled
equal to 0.45 (SOCmax − SOCmin − 0.25). According to the simulation results, the battery capacity was
determined to be 36 kWh. A fixed charging/discharging power (Pch/Pdisch) of 6.6 kW is selected [52].
If the V2G lasts for 1 h, the vehicle’s consumption SOC is about 0.3, less than 0.45. This means that
when V2G is needed, the power stored in the battery is sufficient for 1 h. Assuming that each PEV
participating in the V2G takes only 1 h, the needed number is approximately 7879 (52× 1000/6.6). As
a result, the number of PEVs is enough for V2G.

In all experiments, each optimization algorithm runs 30 times independently to avoid randomness.
For the sake of fairness, the maximum number of the function evaluations for each algorithm is
the same.

Table 1. Load data without plug-in electric vehicles (PEVs).

Hour/h Load/Mw Hour/h Load/Mw Hour/h Load/Mw Hour/h Load/Mw

1 410 7 626 13 704 19 654
2 435 8 654 14 690 20 704
3 475 9 690 15 654 21 680
4 530 10 704 16 580 22 605
5 558 11 720 17 558 23 527
6 608 12 740 18 608 24 463

(1) Case 1: DEED problems without PEVs.

For the purpose to demonstrate the performance of the put forward multi-objective MODECSO
algorithm for the DEED problem, the classic ten-machine system is introduced to simulate in this paper.
Physical characteristics of each generator, 24-h load demand, and operating cost coefficients could be
gotten in [53], the PEVs are not considered in the simulation. Figure 3 displays the results of several
algorithms for solving DEED problems. The specific results of several algorithms proposed in [53–56]
for solving the DEED problem are expressed as Table 2.

Showing as Table 2 and Figure 3, the economic cost obtained by the MODECSO algorithm is the
lowest. Although the pollution emission is slightly higher than [55], the satisfaction of the compromise
solution gotten by MODECSO algorithm is the best one by using the fuzzy theory. Although the
proposed algorithm does not show an advantage in terms of time cost, this is within an acceptable
range. Due to the retain of the diversity of the offspring and exploiting the important information of
infeasible solutions, the repair process of the infeasible solution is carried out. The analysis indicates
the advantage and effectiveness of the proposed MODECSO algorithm in solving DEED problem.
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Table 2. Specific results of several algorithms for solving DEED problem.

Algorithm Selected Target Cost/Yuan (106) Emission/Ton (105)
The Satisfaction of the
Compromise Solution CPU Time (min)

NSGA-II [53]
Best cost

Best emission
Compromise

—
—

2.5226

—
—

3.0994

—
—

0.18137
-

CSO [54]
Best cost

Best emission
Compromise

—
—

2.5013

—
—

3.0905

—
—

0.19086
3.89

Improved
NSGA-II [55]

Best cost
Best emission
Compromise

—
—

2.5552

—
—

2.9924

—
—

0.20476
3.47

MAMODE [56]
Best cost

Best emission
Compromise

2.4925
2.5817
2.5141

3.1512
2.9524
3.0274

—
—

0.20667
3.15

MODECSO
Best cost

Best emission
Compromise

2.4712
—

2.4882

—
2.9214
3.0226

—
—

0.21633
3.42

To further verify effectiveness of the parameter self-learning method and improved horizontal
crossover in the MODECSO algorithm, four scenarios are compared in the classic ten-machine
test system.

a. F and CR are constants and remain the same throughout the iteration.
b. F and CR adopt linear adaptive strategy. During the whole iteration process, the control

parameter F decreases with the iterations, and CR increases with the iterations.
c. F and CR adopt the self-learning strategy of parameters proposed in this paper.
d. F and CR adopt the self-learning strategy of parameters, but the improved horizontal crossover

operations do not be performed.

The comparison of the result of different control parameters is shown in Figure 4, and the result of
the improved horizontal crossover operation is expressed as Figure 5.

As shown in Figures 4 and 5, the adaptive parameter method with self-learning and improved
horizontal crossover operator is effective in solving the DEED problems.
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(2) Case 2: The DEED problem with the consideration of G2V technology for valley filling.

In Case 2, a five-machine test system is introduced. The load requirements are shown in Table 1,
and operating cost parameters, the physical characteristics of each generator are obtained from [35],
the valley filling is achieved by using the G2V technology. The purpose is to analyze benefits of load
distribution by the water-filling algorithm [36], with consideration of two different charging strategies
which are described as follows:

(i) Case 2.1: The charging load of PEVs conforms to the four charging scenarios.

In Case 2.1, four different charging scenarios are modeled to make the comparison and evaluation
about the influences on DEED problem for the power system, there are: (1) Electric Power Research
Institute (EPRI); (2) off-peak charging profile; (3) peak charging profile; and (4) stochastic charging
profile. The probability distribution of the four charging scenarios in each hour is listed in Table 3.
Figure 6 shows the new load demands after considering PEVs of four scenarios. The dispatch results
of the four cases are expressed in Figure 7 and Table 4.
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Table 3. Four charging scenarios.

Scenario 1: EPRI charging scenario Scenario 2: Off-peak charging scenario

Time Charging probability (%) Time Charging probability (%)

1:00–6:00 10 10 9.5 7 5 3 1:00–6:00 18.5 18.5 9 9 4 4
7:00–12:00 1 0.3 0.3 1.3 2.1 2.1 7:00–12:00 0 0 0 0 0 0
13:00–18:00 2.1 2.1 2.1 1 0.5 0.5 13:00–18:00 0 0 0 0 0 0
19:00–24:00 1.6 3.6 5.4 9.5 10 10 19:00–24:00 0 0 0 0 18.5 18.5

Scenario 3: Peak charging scenario Scenario 4: Random charging scenario

Time Charging probability (%) Time Charging probability (%)

1:00–6:00 0 0 0 0 0 0 1:00–6:00 5.7 4.9 4.8 2.4 2.6 9.7
7:00–12:00 0 0 0 0 0 0 7:00–12:00 8.7 4.8 1.1 3.2 2.1 5.7
13:00–18:00 18.5 18.5 18.5 18.5 9 9 13:00–18:00 3.8 2.2 2.1 6.1 3.2 2.2
19:00–24:00 4 4 0 0 0 0 19:00–24:00 2.8 2.2 5.5 2.5 3.5 8.2
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Table 4. Optimal compromise solutions of four charging scenarios.

Scenarios Cost/Yuan/104 Emission/Ton/104 Peak Load/Valley Load

Scenario 1 4.8392 1.9107 1.6712
Scenario 2 4.8017 1.8955 1.5437
Scenario 3 4.8616 1.9398 1.8863
Scenario 4 4.8393 1.9108 1.7650
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As shown in Figure 6, when PEVs is charged in off-peak periods, the newly generated load
curve is relatively smooth and the peak-to-valley difference is the smallest. Moreover, as shown in
Figure 7 and Table 4, comparing among the four charging methods, the cost of off-peak charging is
48,017 yuan/day and the emission of air pollutants is 18,955 ton/day, ranking the first lowest among
four charging scenarios. Conversely, the cost of peak charging is 48,616 yuan/day, and the emission of
air pollutants is 19,398 ton/day, which are the highest among four charging scenarios. Ranking the
second lowest is the EPRI charging profile scenario in the cost and emission, and ranking the third
place is stochastic charging behavior. Therefore, under the same load demand condition, prioritizing to
charge during the off-peak period could save 1.24% in cost and could reduce 2.34% in the air emission.

(ii) Case 2.2: Charging requirements are assigned by the water-filling algorithm.

In Case 2.2, the load data and load demand of PEVs are exactly the same as those in Case 2.1, but
the load demands of PEVs were distributed by the water-filling algorithm. It pours power (PEVs load
demand) into the valley with the main purpose of minimizing load changes. The new load demand
of 24-h after filling the valley is expressed as Figure 8, and the results obtained by MODECSO are
expressed as the Figure 9 and Table 5.

The valley filling strategy can better decrease the difference of peak-to-valley and is able to smooth
the load curve. According to Figure 9, as can be seen that the scheduling result using the valley filling
strategy is better than the scheduling of the four charging scenarios under the same load conditions.
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Table 5. 24-h output of per unit under optimal scheduling in Case 2.2.

Hour/h P1/Mw P2/Mw P3/Mw P4/Mw P5/Mw PEV/Mw

1 72.41 94.12 112.26 125.60 137.57 −126
2 72.38 97.01 122.68 124.46 125.42 −101
3 70.15 101.26 112.12 129.41 128.97 −61
4 70.22 93.87 115.04 127.79 134.93 −6
5 72.19 89.73 126.56 147.17 128.78 0
6 75.00 91.88 135.25 178.07 135.41 0
7 73.89 98.08 135.57 192.34 134.31 0
8 75.00 96.25 152.41 199.49 139.70 0
9 74.25 102.99 172.26 209.36 141.05 0

10 74.38 110.00 175.00 213.79 141.13 0
11 74.36 120.04 173.89 214.11 148.39 0
12 75.00 122.00 175.00 216.21 163.24 0
13 74.47 115.12 172.90 210.28 141.59 0
14 74.06 103.00 173.60 209.16 140.11 0
15 72.62 98.33 161.14 196.33 134.54 0
16 74.04 95.15 127.15 154.71 135.89 0
17 70.89 97.87 132.19 129.66 133.79 0
18 71.03 96.16 154.13 163.11 131.22 0
19 73.58 96.13 156.40 197.40 139.34 0
20 72.69 114.86 174.16 211.48 141.13 0
21 73.45 96.43 175.00 206.68 138.05 0
22 71.14 97.08 138.53 170.86 134.98 0
23 67.24 94.32 113.76 127.78 138.78 -9
24 70.95 92.14 117.49 131.12 130.24 -73

Cost: 4.7837 × 104; emissions: 1.8896 × 104

(3) Case 3: DEED problem using G2V and V2G for valley filling and peak shaving.

In Case 3, the optimal scheduling result of solving DEED problem using G2V and V2G technologies
is given. The loads of the 11th and 12th periods are both set as the value of the 10th periods which
is 704 MW, so the load that peak shaved at the two periods are 16 MW and 36 MW. The number of
PEV and the discharge power of each PEV have been given. The power that each PEV can provide is
23.4 KW. As described before, 80% of PEVs is considered to participate in V2G technology, the total
applicable power is 748.8 MW, more than the total load that peak shaved, that is, 52 MW. Hence, it is
available for PEVs to realize the purpose of peak shaving.

The new 24-h load curve after valley filling and peak shaving are shown in Figures 9 and 10,
which show the POF under three different strategies. Showing as Figure 9 and Table 6, the scheduling
result after using the G2V and V2G technologies is better than the scheduling result of only G2V
technology used.

According to Tables 5 and 6, after adopting V2G and G2V technologies, the economic cost of the
power system dispatch is 47,676 yuan/day, and the pollutant gas emission is 18,797 tons/day. However,
the economic cost generated by using only the G2V technology used is 47,837 yuan/day, and the
pollutant gas emission is 18,896 tons/day. Therefore, in the same situation, using both G2V and V2G
technology could save 167 yuan/day in terms of the economic cost and could reduce 99 ton/day in the
air emission than only using G2V technology. In order to further illustrate the advantages of peaking
shaving and valley filling, the result of Case 2.1 is included in Figure 10 for the purpose to compare.
Scenario 2 fills the valley to some extent, however, it is not comprehensive and systematic as the G2V
technology. Obviously, the economic cost and air emission after using G2V and V2G technology (or
only using G2V technology) are better than the four scenarios of Case 2.1 (the off-peak charging costs
48,017 yuan/day and emits air pollutants with the amount of 18,955 ton/day). This implies that great
significance should be attached to control the behaviors of charging and discharging for PEVs.
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Table 6. 24-h output of per unit under optimal scheduling in Case 3.

Hour/h P1/Mw P2/Mw P3/Mw P4/Mw P5/Mw PEV/Mw

1 69.84 96.85 117.84 125.69 140.50 −134.5
2 71.06 98.15 122.53 129.03 129.86 −109.5
3 69.59 94.27 122.17 129.33 135.30 −69.5
4 70.64 95.45 120.04 127.41 137.11 −14.5
5 74.10 95.87 121.61 132.77 140.16 0
6 74.06 98.51 137.85 167.54 137.71 0
7 75.00 97.25 124.91 197.37 139.70 0
8 72.89 96.61 149.27 206.38 137.68 0
9 75.00 103.37 174.42 205.95 141.15 0
10 74.37 109.35 175.00 211.89 143.79 0
11 74.47 111.98 173.51 210.15 144.27 16
12 73.37 111.77 172.91 211.62 144.71 36
13 74.89 110.74 174.80 210.31 143.56 0
14 74.41 103.08 171.09 207.15 144.18 0
15 74.15 99.24 160.17 194.40 134.88 0
16 71.27 98.06 120.17 160.14 137.45 0
17 71.92 95.46 124.33 133.52 139.22 0
18 74.16 97.01 131.93 175.88 136.69 0
19 73.75 97.75 153.38 200.72 137.29 0
20 74.18 109.13 173.76 215.98 141.30 0
21 74.34 99.59 174.24 209.97 131.44 0
22 71.21 96.46 140.77 172.02 132.07 0
23 70.28 91.49 123.54 131.98 133.34 −17.5
24 72.17 95.44 129.06 127.08 126.81 −81.5

Cost: 4.7676 × 104; emissions: 1.8797 × 104

Finally, the three cases are briefly summarized here. Case 1 shows the effectiveness and advantage
of MODECSO algorithm in dealing with the DEED problems according to compare with several other
algorithms. Cases 2 and 3 prove that under the same load, the introduction of PEVs for valley filling
and peak shaving decrease the difference of peak-to-valley and smooth the load curve relatively, and
could reduce the cost and pollution gas emissions.
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5. Conclusions

This work established a DEED model with consideration of PEVs, using G2V and V2G technology
to realize the purpose of peak shaving and valley filling; the associated influences on economic cost
and pollution emission have been discussed. The optimal scheduling results are generated based on
different V2G and G2V loads. A new multi-objective hybrid optimization algorithm (called MODECSO)
based on adaptive differential evolution and crisscross algorithm is used to deal with the model under
three conditions. Case 1 shows the advantage and effectiveness of the put forward MODECSO
algorithm in dealing with DEED problem, whereas Case 2 and 3 demonstrate that it is effective of
the method of using PEVs for the purpose to shave peak and fill valley. Experimental results show
that under the same load conditions, it can save costs and reduce emissions of pollution gas by load
transfer, this provides a new way for solving the DEED problem. The finding suggests that receiving
revenue in the V2G process is of significance for PEV owners, which will affect the willingness to
attend V2G in a large extent. Some policies should also be developed to encourage PEV owners to
join in such an activity. In addition, some renewable energy sources such as solar could also be taken
into account which is beneficial to energy conservation and emission reduction for the sustainable
development of human society.
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