Capacity of Linguistic Communication Channels in Literary Texts: Application to Charles Dickens’ Novels
Abstract
:1. Linguistic Communication Channels in Literary Texts
2. Fundamental Relationships in Linguistic Communication Channels
3. Experimental Signal-to-Noise Ratios in Linguistic Channels
- Generate independent numbers (the number of disjoint block texts, e.g., chapters) from a discrete uniform probability distribution in the range 1 to , with replacement, i.e., a text can be selected more than once.
- “Write” another possible “work ” with new disjoint texts, e.g., the sequence 2; 1; ; ; hence, take text 2, followed by text 1, text text up to texts. A block text can appear twice (with probability ), three times (with probability ), etc., and the new “work ” can contain a number of words greater or smaller than the original work, on average (the differences are small and do not affect the final statistical results and analysis).
- Calculate the parameters and of the regression line between words (independent variable) and sentences (dependent variable) in the new “work ”, namely Equation (1).
- Compare and of the new “work ” (output, dependent work) with any other work (input, independent work, and ), in the “cross-channels” so defined, including the original work (a particular case referred to as the “self-channel”).
- Calculate , , and of the cross-channels (linking sentences to sentences), according to the theory of Section 2.
- Consider the values of so obtained, in Equation (10), as “experimental” results .
- Repeat Steps 1 to 6 many times to obtain reliable results (we have done so 5000 times because this number of simulations ensures reliable results down to two decimal digits in ).
4. Capacity of Self- and Cross-Channels and Its Probability Distribution
5. Charles Dickens’ Novels and Deep Language Variables
5.1. Relationship between and , Miller’s Law
5.2. The Vector Plane
6. Experimental Signal-to-Noise Ratio of Self- and Cross-Channels
7. Capacity of Self- and Cross-Channels and Likeness Index
8. The Likely Influence of the Gospels on Dickens’ Novels
9. Final Remarks
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Statistics of Gospels of Mark, Luke, John in the King James Translation
Novel | ||||||
---|---|---|---|---|---|---|
Ave | Dec | Ave | Dev | |||
Mark (self-channel) | 24.57 | 6.74 | 0.9957 | 0.0089 | 0.9968 | 0.0292 |
Oliver Twist | 17.09 | 3.51 | 0.9936 | 0.0075 | 1.0960 | 0.0322 |
David Copperfield | 16.47 | 3.31 | 0.9931 | 0.0137 | 1.1130 | 0.0321 |
Bleak House | 22.33 | 5.89 | 0.9947 | 0.0081 | 0.9816 | 0.0285 |
A Tale of Two Cities | 22.70 | 6.60 | 0.9935 | 0.0135 | 1.0237 | 0.0298 |
Our Mutual friend | 19.05 | 5.41 | 0.9902 | 0.0089 | 0.9888 | 0.0287 |
Novel | ||||||
---|---|---|---|---|---|---|
Ave | Dec | Ave | Dev | |||
Luke (self-channel) | 26.39 | 6.21 | 0.9978 | 0.0030 | 0.9984 | 0.0245 |
Oliver Twist | 21.07 | 3.54 | 0.9977 | 0.0033 | 1.0676 | 0.0268 |
David Copperfield | 16.98 | 3.67 | 0.9920 | 0.0080 | 1.0838 | 0.0269 |
Bleak House | 23.70 | 4.45 | 0.9979 | 0.0032 | 0.9562 | 0.0237 |
A Tale of Two Cities | 20.87 | 5.75 | 0.9930 | 0.0072 | 0.9967 | 0.0246 |
Our Mutual friend | 22.38 | 4.96 | 0.9960 | 0.0047 | 0.9615 | 0.0239 |
Novel | ||||||
---|---|---|---|---|---|---|
Ave | Dec | Ave | Dev | |||
Luke (self-channel) | 26.88 | 6.67 | 0.9977 | 0.0040 | 0.9986 | 0.0206 |
Oliver Twist | 12.40 | 1.08 | 0.9970 | 0.0040 | 1.2227 | 0.0257 |
David Copperfield | 11.30 | 1.51 | 0.9936 | 0.0086 | 1.2412 | 0.0255 |
Bleak House | 18.74 | 2.40 | 0.9975 | 0.0045 | 1.0951 | 0.0227 |
A Tale of Two Cities | 15.12 | 2.44 | 0.9942 | 0.0083 | 1.1421 | 0.0236 |
Our Mutual friend | 16.77 | 2.40 | 0.9946 | 0.0054 | 1.1023 | 0.0229 |
References
- Matricciani, E. Deep Language Statistics of Italian throughout Seven Centuries of Literature and Empirical Connections with Miller’s 7 ∓ 2 Law and Short-Term Memory. Open J. Stat. 2019, 9, 373–406. [Google Scholar] [CrossRef] [Green Version]
- Matricciani, E. A Statistical Theory of Language Translation Based on Communication Theory. Open J. Stat. 2020, 10, 936–997. [Google Scholar] [CrossRef]
- Matricciani, E. Linguistic Mathematical Relationships Saved or Lost in Translating Texts: Extension of the Statistical Theory of Translation and Its Application to the New Testament. Information 2022, 13, 20. [Google Scholar] [CrossRef]
- Matricciani, E. Multiple Communication Channels in Literary Texts. Open J. Stat. 2022, 12, 486–520. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Catford, J.C. A Linguistic Theory of Translation. An Essay in Applied Linguistics; Oxford University Press: Oxford, UK, 1965. [Google Scholar]
- Munday, J. Introducing Translation Studies. Theories and Applications, 2nd ed.; Routledge: London, UK, 2008. [Google Scholar]
- Proshina, Z. Theory of Translation, 3rd ed.; Far Eastern University Press: Manila, Philippines, 2008. [Google Scholar]
- Trosberg, A. Discourse analysis as part of translator training. Curr. Issues Lang. Soc. 2000, 7, 185–228. [Google Scholar] [CrossRef]
- Tymoczko, M. Translation in a Post—Colonial Context: Early Irish Literature in English Translation; St. Jerome Publishing: Manchester, UK, 1999. [Google Scholar]
- Warren, R. (Ed.) The Art of Translation: Voices from the Field; North-Eastern University Press: Boston, MA, USA, 1989. [Google Scholar]
- Williams, I. A corpus-based study of the verb observar in English-Spanish translations of biomedical research articles. Target 2007, 19, 85–103. [Google Scholar] [CrossRef]
- Wilss, W. Knowledge and Skills in Translator Behaviour; John Benjamins: Amsterdam, The Netherlands; Philadelphia, PA, USA, 1996. [Google Scholar]
- Wolf, M.; Fukari, A. (Eds.) Constructing a Sociology of Translation; John Benjamins: Amsterdam, The Netherlands; Philadelphia, PA, USA, 2007. [Google Scholar]
- Gamallo, P.; Pichel, J.R.; Alegria, I. Measuring Language Distance of Isolated European Languages. Information 2020, 11, 181. [Google Scholar] [CrossRef] [Green Version]
- Barbançon, F.; Evans, S.; Nakhleh, L.; Ringe, D.; Warnow, T. An experimental study comparing linguistic phylogenetic reconstruction methods. Diachronica 2013, 30, 143–170. [Google Scholar] [CrossRef] [Green Version]
- Bakker, D.; Muller, A.; Velupillai, V.; Wichmann, S.; Brown, C.H.; Brown, P.; Egorov, D.; Mailhammer, R.; Grant, A.; Holman, E.W. Adding typology to lexicostatistics: Acombined approach to language classification. Linguist. Typol. 2009, 13, 169–181. [Google Scholar] [CrossRef]
- Petroni, F.; Serva, M. Measures of lexical distance between languages. Phys. A Stat. Mech. Appl. 2010, 389, 2280–2283. [Google Scholar] [CrossRef] [Green Version]
- Carling, G.; Larsson, F.; Cathcart, C.; Johansson, N.; Holmer, A.; Round, E.; Verhoeven, R. Diachronic Atlas of Comparative Linguistics (DiACL)—A database for ancient language typology. PLoS ONE 2018, 13, e0205313. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Liang, W.; Shi, Y.; Huang, Q. Comparison of directed and weighted co-occurrence networks of six languages. Phys. A Stat. Mech. Appl. 2014, 393, 579–589. [Google Scholar] [CrossRef]
- Liu, H.; Cong, J. Language clustering with word co-occurrence networks based on parallel texts. Chin. Sci. Bull. 2013, 58, 1139–1144. [Google Scholar] [CrossRef] [Green Version]
- Gamallo, P.; Pichel, J.R.; Alegria, I. From Language Identification to Language Distance. Phys. A 2017, 484, 162–172. [Google Scholar] [CrossRef]
- Pichel, J.R.; Gamallo, P.; Alegria, I. Measuring diachronic language distance using perplexity: Application to English, Portuguese, and Spanish. Nat. Lang. Eng. 2019, 26, 433–454. [Google Scholar] [CrossRef]
- Eder, M. Visualization in stylometry: Cluster analysis using networks. Digit. Scholarsh. Humanit. 2015, 32, 50–64. [Google Scholar] [CrossRef]
- Brown, P.F.; Cocke, J.; Pietra, A.D.; Pietra, V.J.D.; Jelinek, F.; Lafferty, J.D.; Mercer, R.L.; Roossin, P.S. A Statistical Approach to Machine Translation. Comput. Linguist. 1990, 16, 79–85. [Google Scholar]
- Koehn, F.; Och, F.J.; Marcu, D. Statistical Phrase-Based Translation. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology (HLT-NAACL 2003), Edmonton, AB, Canada, 27 May–1 June 2003; pp. 48–54. [Google Scholar]
- Carl, M.M.; Schaeffer, M. Sketch of a Noisy Channel Model for the Translation Process. In Empirical Modelling of Translation and Interpreting; Hansen-Schirra, S., Czulo, O., Hofmann, S., Eds.; Language Science Press: Berlin, Germany, 2017; pp. 71–116. [Google Scholar] [CrossRef]
- Elmakias, I.; Vilenchik, D. An Oblivious Approach to Machine Translation Quality Estimation. Mathematics 2021, 9, 2090. [Google Scholar] [CrossRef]
- Lavie, A.; Agarwal, A. Meteor: An Automatic Metric for MT Evaluation with High Levels of Correlation with Human Judgments. In Proceedings of the Second Workshop on Statistical Machine Translation, Prague, Czech Republic, 23 June 2007; pp. 228–231. [Google Scholar]
- Banchs, R.; Li, H. AM–FM: A Semantic Framework for Translation Quality Assessment. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 19–24 June 2011; Volume 2, pp. 153–158. [Google Scholar]
- Forcada, M.; Ginestí-Rosell, M.; Nordfalk, J.; O’Regan, J.; Ortiz-Rojas, S.; Pérez-Ortiz, J.; Sánchez-Martínez, F.; Ramírez-Sánchez, G.; Tyers, F. Apertium: A free/open-source platform for rule-based machine translation. Mach. Transl. 2011, 25, 127–144. [Google Scholar] [CrossRef]
- Buck, C. Black Box Features for the WMT 2012 Quality Estimation Shared Task. In Proceedings of the 7th Workshop on Statistical Machine Translation, Montreal, QC, Canada, 7–8 June 2012; pp. 91–95. [Google Scholar]
- Assaf, D.; Newman, Y.; Choen, Y.; Argamon, S.; Howard, N.; Last, M.; Frieder, O.; Koppel, M. Why “Dark Thoughts” aren’t really Dark: A Novel Algorithm for Metaphor Identification. In Proceedings of the 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain, Singapore, 16–19 April 2013; pp. 60–65. [Google Scholar]
- Graham, Y. Improving Evaluation of Machine Translation Quality Estimation. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; pp. 1804–1813. [Google Scholar]
- Espla-Gomis, M.; Sanchez-Martınez, F.; Forcada, M.L. UAlacant Word-Level Machine Translation Quality Estimation System at WMT 2015. In Proceedings of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal, 17–18 September 2015; pp. 309–315. [Google Scholar]
- Costa-Jussà, M.R.; Fonollosa, J.A. Latest trends in hybrid machine translation and its applications. Comput. Speech Lang. 2015, 32, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Kreutzer, J.; Schamoni, S.; Riezler, S. QUality Estimation from ScraTCH (QUETCH): Deep Learning for Word-Level Translation Quality Estimation. In Proceedings of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal, 17–18 September 2015; pp. 316–322. [Google Scholar]
- Specia, L.; Paetzold, G.; Scarton, C. Multi-Level Translation Quality Prediction with QuEst++. In Proceedings of the ACL–IJCNLP 2015 System Demonstrations, Beijing, China, 26–31 July 2015; pp. 115–120. [Google Scholar]
- Banchs, R.E.; D’Haro, L.F.; Li, H. Adequacy-Fluency Metrics: Evaluating MT in the Continuous Space Model Framework. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 472–482. [Google Scholar] [CrossRef]
- Martins, A.F.T.; Junczys-Dowmunt, M.; Kepler, F.N.; Astudillo, R.; Hokamp, C.; Grundkiewicz, R. Pushing the Limits of Quality Estimation. Trans. Assoc. Comput. Linguist. 2017, 5, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Jung, H.Y.; Kwon, H.; Lee, J.H.; Na, S.H. Predictor-Estimator: Neural Quality Estimation Based on Target Word Prediction for Machine Translation. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2018, 17, 1–22. [Google Scholar] [CrossRef]
- Kepler, F.; Trénous, J.; Treviso, M.; Vera, M.; Martins, A.F.T. OpenKiwi: An Open Source Framework for Quality Estimation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Florence, Italy, 28 July–2 August 2019; pp. 117–122. [Google Scholar]
- D’Haro, L.; Banchs, R.; Hori, C.; Li, H. Automatic Evaluation of End-to-End Dialog Systems with Adequacy-Fluency Metrics. Comput. Speech Lang. 2018, 55, 200–215. [Google Scholar] [CrossRef]
- Yankovskaya, E.; Tättar, A.; Fishel, M. Quality Estimation with Force-Decoded Attention and Cross-Lingual Embeddings. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, Belgium, Brussels, 31 October–1 November 2018; pp. 816–821. [Google Scholar]
- Yankovskaya, E.; Tättar, A.; Fishel, M. Quality Estimation and Translation Metrics via Pre-Trained Word and Sentence Embeddings. In Proceedings of the Fourth Conference on Machine Translation, Florence, Italy, 1–2 August 2019; Volume 3, pp. 101–105. [Google Scholar]
- Papoulis, A. Probability & Statistics; Prentice Hall: Hoboken, NJ, USA, 1990. [Google Scholar]
- Miller, G.A. The Magical Number Seven, Plus or Minus Two. Some Limits on Our Capacity for Processing Information. Psychol. Rev. 1955, 2, 343–352. [Google Scholar]
- Dickens, C. The Life of Our Lord; Simon & Schuster: New York, NY, USA, 1934. [Google Scholar]
- Walder, D. Dickens and Religion; George Allen & Unwin: London, UK, 1981. [Google Scholar]
- Hanna, R.C. The Dickens Family Gospel: A Family Devotional Guide Based on the Christian Teachings of Charles Dickens; Rainbow Publishers: Kochi, India, 1999. [Google Scholar]
- Hanna, R.C. The Dickens Christian Reader: A Collection of New Testament Teachings and Biblical References from the Works of Charles Dickens; AMS Press: New York, NY, USA, 2000. [Google Scholar]
- Matricciani, E.; Caro, L.D. A Deep-Language Mathematical Analysis of Gospels, Acts and Revelation. Religions 2019, 10, 257. [Google Scholar] [CrossRef] [Green Version]
Novel | Chapters | Characters | Words | Sentences | ||||
---|---|---|---|---|---|---|---|---|
The Adventures of Oliver Twist (1837–1839) | 53 | 679,008 | 160,604 | 6712 | 4.228 0.013 | 24.321 0.427 | 5.695 0.071 | 4.279 0.065 |
David Copperfield (1849–1850) | 64 | 1,469,251 | 363,284 | 15,000 | 4.044 0.152 | 24.398 0.264 | 5.613 0.038 | 4.349 0.040 |
Bleak House (1852–1853) | 64 | 1,480,523 | 350,020 | 16,350 | 4.230 0.180 | 21.638 0.288 | 6.590 0.062 | 3.284 0.031 |
A Tale of Two Cities (1859) | 45 | 607,424 | 142,762 | 6207 | 4.255 0.018 | 23.656 0.650 | 6.192 0.069 | 3.806 0.075 |
Our Mutual Friend (1864–1865) | 67 | 1,394,753 | 330,593 | 15,327 | 4.219 (0.014) | 21.867 0.323 | 5.997 0.046 | 3.650 0.050 |
Literary Work | Order | Chapters | Characters | Words | Sentences |
---|---|---|---|---|---|
Matthew King James (1611) | 1 | 28 | 99,795 | 23,397 | 1040 |
Robinson Crusoe (D. Defoe, 1719) | – | 20 | 479,249 | 121,606 | 2393 |
Pride and Prejudice (J. Austen, 1813) | 2 | 61 | 537,005 | 121,934 | 6013 |
Wuthering Heights (E. Brontë, 1845–1846) | 3 | 32 | 470,820 | 110,297 | 6352 |
Vanity Fair (W. Thackeray, 1847–1848) | 4 | 66 | 1,285,688 | 277,716 | 13,007 |
Moby Dick (H. Melville, 1851) | 5 | 132 | 922,351 | 203,983 | 9582 |
The Mill On The Floss (G. Eliot, 1860) | 6 | 57 | 888,867 | 207,358 | 9018 |
Alice’s Adventures in Wonderland (L. Carroll, 1865) | 7 | 12 | 107,452 | 27,170 | 1629 |
Little Women (L.M. Alcott, 1868–1869) | 8 | 47 | 776,304 | 185,689 | 10,593 |
Treasure Island (R.L. Stevenson, 1881–1882) | 9 | 34 | 273,717 | 68,033 | 3824 |
Adventures of Huckleberry Finn (M. Twain, 1884) | 10 | 42 | 427473 | 110997 | 5887 |
Three Men in a Boat (J.K. Jerome, 1889) | 11 | 16 | 235,362 | 55,346 | 5341 |
The Picture of Dorian Gray (O. Wilde, 1890) | 12 | 13 | 229,118 | 54,656 | 4292 |
The Jungle Book (R. Kipling, 1894) | 13 | 9 | 209,935 | 51,090 | 3214 |
The War of the Worlds (H.G. Wells, 1897) | 14 | 27 | 265,499 | 60,556 | 3306 |
The Wonderful Wizard of Oz (L.F. Baum, 1900) | 15 | 22 | 156,973 | 39,074 | 2219 |
The Hound of The Baskervilles (A.C. Doyle, 1901–1902) | 16 | 15 | 245,327 | 591,32 | 4080 |
Peter Pan (J.M. Barrie, 1902) | 17 | 17 | 194,105 | 47,097 | 31,77 |
A Little Princess (F.H. Burnett, 1902–1905) | 18 | 20 | 278,985 | 66,763 | 4838 |
Martin Eden (J. London, 1908–1909) | 19 | 45 | 601,672 | 139,281 | 9173 |
Women in Love (D.H. Lawrence, 1920) | 20 | 31 | 785,240 | 184,393 | 16,048 |
The Secret Adversary (A. Christie, 1922) | 21 | 29 | 324,635 | 75,840 | 8536 |
The Sun Also Rises (E. Hemingway, 1926) | 22 | 18 | 270,867 | 69,166 | 7614 |
A Farewell to Arms (H. Hemingway, 1929) | 23 | 41 | 352,251 | 89,396 | 10,324 |
Of Mice and Men (J. Steinbeck, 1937) | 24 | 16 | 119,604 | 29,771 | 3463 |
Literary Work | Order | ||||
---|---|---|---|---|---|
Matthew King James (1611) | 1 | 4.266 0.011 | 23.510 4.402 | 5.906 0.549 | 3.981 0.625 |
Robinson Crusoe (D. Defoe, 1719) | – | 3.941 0.016 | 57.747 2.448 | 7.119 0.077 | 8.081 0.282 |
Pride and Prejudice (J. Austen, 1813) | 2 | 4.404 0.017 | 24.856 0.5661 | 7.156 0.090 | 3.459 0.049 |
Wuthering Heights (E. Brontë, 1845–1846) | 3 | 4.269 0.015 | 25.822 0.628 | 5.969 0.060 | 4.313 0.075 |
Vanity Fair (W. Thackeray, 1847–1848) | 4 | 4.630 0.010 | 25.744 0.478 | 6.733 0.077 | 3.830 0.063 |
Moby Dick (H. Melville, 1851) | 5 | 4.522 0.014 | 31.1769 0.5719 | 6.447 0.086 | 4.870 0.080 |
The Mill On The Floss (G. Eliot, 1860) | 6 | 4.287 0.018 | 28.026 0.727 | 7.089 0.092 | 3.942 0.076 |
Alice’s Adventures in Wonderland (L. Carroll, 1865) | 7 | 3.955 0.024 | 30.920 3.1676 | 5.790 0.159 | 5.709 0.423 |
Little Women (L.M. Alcott, 1868–1869) | 8 | 4.181 0.016 | 21.083 0.4700 | 6.302 0.068 | 3.333 0.048 |
Treasure Island (R. L. Stevenson, 1881–1882) | 9 | 4.023 0.016 | 21.893 0.7709 | 6.050 0.159 | 3.611 0.071 |
Adventures of Huckleberry Finn (M. Twain, 1884) | 10 | 3.851 0.016 | 24.886 0.822 | 6.633 0.103 | 3.797 0.147 |
Three Men in a Boat (J.K. Jerome, 1889) | 11 | 4.253 0.023 | 13.707 0.398 | 6.137 0.166 | 2.241 0.053 |
The Picture of Dorian Gray (O. Wilde, 1890) | 12 | 4.192 0.040 | 16.563 1.959 | 6.292 0.191 | 2.560 0.195 |
The Jungle Book (R. Kipling, 1894) | 13 | 4.109 0.295 | 21.516 1.308 | 7.145 0.178 | 2.997 0.130 |
The War of the Worlds (H.G. Wells, 1897) | 14 | 4.384 0.035 | 20.850 0.650 | 7.667 0.177 | 2.712 0.046 |
The Wonderful Wizard of Oz (L.F. Baum, 1900) | 15 | 4.017 0.021 | 20.547 0.496 | 7.627 0.136 | 2.692 0.042 |
The Hound of The Baskervilles (A.C. Doyle, 1901–1902) | 16 | 4.149 0.030 | 17.793 0.611 | 7.832 0.242 | 2.273 0.038 |
Peter Pan (J.M. Barrie, 1902) | 17 | 4.121 0.023 | 18.1953 0.939 | 6.348 0.223 | 2.856 0.085 |
A Little Princess (F.H. Burnett, 1902–1905) | 18 | 4.179 0.113 | 16.377 0.574 | 6.795 0.168 | 2.405 0.051 |
Martin Eden (J. London, 1908–1909) | 19 | 4.320 0.020 | 16.941 0.389 | 6.764 0.095 | 2.501 0.040 |
Women in Love (D.H. Lawrence, 1920) | 20 | 4.259 0.017 | 13.709 0.198 | 5.215 0.065 | 2.631 0.028 |
The Secret Adversary (A. Christie, 1922) | 21 | 4.281 0.020 | 11.020 0.158 | 5.522 0.082 | 2.001 0.027 |
The Sun Also Rises (E. Hemingway, 1926) | 22 | 3.916 0.025 | 10.698 0.497 | 6.016 0.188 | 1.771 0.039 |
A Farewell to Arms (H. Hemingway, 1929) | 23 | 3.940 0.015 | 10.120 0.370 | 6.802 0.184 | 1.480 0.018 |
Of Mice and Men (J. Steinbeck, 1937) | 24 | 4.017 0.018 | 9.669 0.169 | 5.606 0.079 | 1.726 0.021 |
Literary Work | ||
---|---|---|
Oliver Twist | 0.0417 | 0.9307 |
David Copperfield | 0.0411 | 0.9704 |
Bleak House | 0.0466 | 0.9391 |
A Tale of Two Cities | 0.0447 | 0.9680 |
Our Mutual Friend | 0.0463 | 0.9149 |
Matthew | 0.0447 | 0.9499 |
Novel | ||||||
---|---|---|---|---|---|---|
Ave | Dev | Ave | Dev | |||
Oliver Twist (self-channel) | 29.45 | 6.66 | 0.9988 | 0.0019 | 1.0000 | 0.0151 |
David Copperfield | 18.18 | 3.98 | 0.9904 | 0.0070 | 1.0161 | 0.0155 |
A Tale of Two Cities | 17.71 | 2.34 | 0.9916 | 0.0064 | 0.9334 | 0.0141 |
Bleak House | 18.92 | 1.31 | 0.9985 | 0.0024 | 0.8960 | 0.0136 |
Our Mutual Friend | 19.09 | 1.67 | 0.9979 | 0.0025 | 0.9015 | 0.0136 |
Novel | ||||||
---|---|---|---|---|---|---|
Ave | Dev | Ave | Dev | |||
David Copperfield (self-channel) | 32.02 | 6.32 | 0.9994 | 0.0009 | 0.9996 | 0.0120 |
Oliver Twist | 17.87 | 2.63 | 0.9906 | 0.0045 | 0.9842 | 0.0117 |
A Tale of Two Cities | 21.24 | 1.31 | 0.9993 | 0.0010 | 0.9191 | 0.0110 |
Bleak House | 16.22 | 1.11 | 0.9933 | 0.0038 | 0.8816 | 0.0103 |
Our Mutual Friend | 14.32 | 1.15 | 0.9843 | 0.0059 | 0.8874 | 0.0106 |
Novel | ||||||
---|---|---|---|---|---|---|
Ave | Dev | Ave | Dev | |||
Bleak House (self-channel) | 29.86 | 6.72 | 0.9988 | 0.0018 | 1.0007 | 0.0126 |
Oliver Twist | 17.75 | 1.39 | 0.9985 | 0.0018 | 1.1175 | 0.0143 |
David Copperfield | 19.57 | 3.55 | 0.9942 | 0.0053 | 1.0436 | 0.0133 |
A Tale of Two Cities | 19.62 | 3.50 | 0.9943 | 0.0052 | 1.0439 | 0.0135 |
Our Mutual Friend | 24.46 | 6.20 | 0.9968 | 0.0031 | 1.0075 | 0.0129 |
Novel | ||||||
---|---|---|---|---|---|---|
Ave | Dev | Ave | Dev | |||
A Tale of Two Cities (self-channel) | 26.01 | 6.85 | 0.9974 | 0.0036 | 0.9955 | 0.0297 |
Oliver Twist | 18.57 | 5.84 | 0.9921 | 0.0068 | 1.0666 | 0.0316 |
David Copperfield | 19.23 | 2.74 | 0.9972 | 0.0039 | 1.0829 | 0.0323 |
Bleak House | 19.72 | 3.39 | 0.9943 | 0.0053 | 0.9548 | 0.0281 |
Our Mutual Friend | 16.72 | 3.68 | 0.9868 | 0.0096 | 0.9611 | 0.0285 |
Novel | ||||||
---|---|---|---|---|---|---|
Ave | Dev | Ave | Dev | |||
Our Mutual Friend (self-channel) | 29.89 | 6.66 | 0.9989 | 0.0017 | 1.0004 | 0.0139 |
Oliver Twist | 18.00 | 1.58 | 0.9981 | 0.0028 | 1.1101 | 0.0154 |
David Copperfield | 12.67 | 1.61 | 0.9841 | 0.0085 | 1.1272 | 0.0155 |
Bleak House | 25.22 | 6.58 | 0.9968 | 0.0038 | 0.9942 | 0.0138 |
A Tale of Two Cities | 15.47 | 2.39 | 0.9858 | 0.0078 | 1.0358 | 0.0144 |
Novel | ||||||
---|---|---|---|---|---|---|
Ave | Dev | Ave | Dev | |||
Matthew (self-channel) | 26.75 | 6.57 | 0.9979 | 0.0036 | 1.0008 | 0.0258 |
Oliver Twist | 20.02 | 4.19 | 0.9964 | 0.0041 | 1.0721 | 0.0273 |
David Copperfield | 17.71 | 2.74 | 0.9948 | 0.0073 | 1.0885 | 0.0281 |
Bleak House | 23.72 | 6.32 | 0.9956 | 0.0064 | 1.0000 | 0.0260 |
A Tale of Two Cities | 22.97 | 3.99 | 0.9974 | 0.0037 | 0.9596 | 0.0251 |
Our Mutual Friend | 19.83 | 3.95 | 0.9934 | 0.0060 | 0.9653 | 0.0252 |
Novel | Oliver Twist | David Copperfield | Bleak House | A Tale of Two Cities | Our Mutual Friend | Matthew |
---|---|---|---|---|---|---|
Oliver Twist | 1 | 0.102 | 0.103 | 0.554 | 0.116 | 0.508 |
David Copperfield | 0.277 | 1 | 0.295 | 0.415 | 0.030 | 0.293 |
Bleak House | 0.139 | 0.025 | 1 | 0.488 | 0.724 | 0.813 |
A Tale of Two Cities | 0.165 | 0.120 | 0.294 | 1 | 0.097 | 0.671 |
Our Mutual Friend | 0.168 | 0.013 | 0.675 | 0.353 | 1 | 0.483 |
Gospel | Chapters | Characters | Words | Sentences | ||||
---|---|---|---|---|---|---|---|---|
Matthew | 28 | 99,795 | 23,397 | 1040 | 4.266 0.011 | 23.510 4.402 | 5.906 0.549 | 3.981 0.625 |
Mark | 16 | 61,355 | 15,166 | 688 | 4.046 0.022 | 22.297 0.5969 | 5.847 0.073 | 3.816 0.100 |
Luke | 24 | 102,726 | 25,469 | 1127 | 4.033 0.015 | 22.883 0.544 | 6.104 0.178 | 3.789 0.096 |
John | 21 | 75,635 | 19,094 | 968 | 3.961 0.029 | 19.971 0.496 | 5.838 0.134 | 3.443 0.092 |
Gospel | ||
---|---|---|
Matthew | 0.0447 | 0.9499 |
Mark | 0.0459 | 0.9541 |
Luke | 0.0446 | 0.9329 |
John | 0.0511 | 0.9441 |
Input Novel | Matthew | Mark | Luke | John |
---|---|---|---|---|
Oliver Twist | 0.508 | 0.429 | 0.545 | 0.045 |
David Copperfield | 0.293 | 0.384 | 0.325 | 0.045 |
Bleak House | 0.671 | 0.851 | 0.767 | 0.314 |
A Tale of Two Cities | 0.813 | 0.890 | 0.643 | 0.170 |
Our Mutual Friend | 0.483 | 0.641 | 0.707 | 0.227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matricciani, E. Capacity of Linguistic Communication Channels in Literary Texts: Application to Charles Dickens’ Novels. Information 2023, 14, 68. https://doi.org/10.3390/info14020068
Matricciani E. Capacity of Linguistic Communication Channels in Literary Texts: Application to Charles Dickens’ Novels. Information. 2023; 14(2):68. https://doi.org/10.3390/info14020068
Chicago/Turabian StyleMatricciani, Emilio. 2023. "Capacity of Linguistic Communication Channels in Literary Texts: Application to Charles Dickens’ Novels" Information 14, no. 2: 68. https://doi.org/10.3390/info14020068
APA StyleMatricciani, E. (2023). Capacity of Linguistic Communication Channels in Literary Texts: Application to Charles Dickens’ Novels. Information, 14(2), 68. https://doi.org/10.3390/info14020068