A Deep Learning Technique for Biometric Authentication Using ECG Beat Template Matching
Abstract
:1. Introduction
- Retrieval based algorithm is proposed instead of classification to identify the person; hence the system is secure.
- An image-based beat authentication is used to extract in-depth information and make the system resilient to noise.
- The proposed customised deep learning model is tested with the different beat combinations in a single frame image. This combination allows us to extract more features from the subject data.
- we can take advantage of recent developments in computer vision in image-related tasks by converting ECG signals into image data. Therefore, it is easier to analyse images than signal data.
- A customised activation function is developed in this work to design fast convergence deep learning architecture.
- To assess the viability of the proposed scheme, comprehensive comparison analyses are conducted utilising a variety of measurement parameters, including sensitivity, specificity, positive predictivity, and area under the curve (AUC).
S. No | Author | Database | Number of Subjects Considered during Training/Testing | Feature Extraction and Classifier | Accuracy (in %) | Remarks |
---|---|---|---|---|---|---|
1 | Boumbarov et al. [48] | Private | 09 | Beat transform features with neural network (NN) | 86.00 | No of subjects tested is less and accuracy also low. |
2 | Agrafioti et al. [49] | MIT-BIH PTB | 13 30 | Auto Correlation (AC) coefficients with NN | 87.00 79.00 | Accuracy and data size are low |
3 | Ghofrani et al. [50] | MIT-BIH | 12 | Non-fiducial features with K-nearest neighbours (K-NN) | 98.00 | No of subjects tested is very low |
4 | Choi et al. [51] | MIT-BIH PTB | 175 | Fiducial features with support vector machine (SVM) | 95.90 | The features considered are very low |
5 | Shen et al. [52] | Private | 168 | Fiducial features with K-NN | 95.30 | All the ECG signals collected in the study were only rest position |
6 | J Pinto et al. [53] | Private | 06 | Discrete Cosine Transform (DCT) features with SVM | 94.90 | No of subjects tested is very low |
7 | Chu et al. [29] | ECGID MIT BIH | 90 48 | Time-domain features with SVM | 98.24 95.99 | Raw ECG considered and pre-processing techniques were not addressed |
8 | Bashar M et al. [54] | MIT-BIH PTB | 60 | Statistical features with Euclidean distance | 91.67 | Feature vector dimension is large and the accuracy reported is low |
9 | Tan et al. [55] | ECGID | 90 | DWT features with Random forest | 91.00 | Accuracy is low |
10 | Komeili et al. [56] | TEOAE | 82 | AC coefficients with Linear discriminant analysis (LDA) and SVM | 92.10 | Feature vector size is large and accuracy reported is low |
11 | M G Kim et al. [57] | NSRDB | 18 | Deep learning based ensemble CNN | 98.90 | No. of subjects considered for experimentation is low |
12 | Pinto et al. [58] | PTB | 290 | CNN with Euclidean distance | 91.00 | Accuracy reported is low |
13 | El Boujnouni et al. [59] | NSR | 18 | Capsule Network | 98.20 | Number of subjects selected is low |
2. ECG Database Description
3. Proposed System for Biometric Authentication
3.1. Pre-Processing and Beat Segmentation
3.2. Database Preparation
3.3. Biometric Authentication Network Based on Deep Learning Technique
3.4. Customised Activation Function of the Proposed Method
4. Experimental Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Del Testa, D.; Rossi, M. Lightweight lossy compression of biometric patterns via denoising autoencoders. IEEE Signal Process. Lett. 2015, 22, 2304–2308. [Google Scholar] [CrossRef]
- Chen, S.; Meng, Z.; Zhao, Q. Electrocardiogram Recognization Based on Variational AutoEncoder. In Machine Learning and Biometrics; IntechOpen: London, UK, 2018. [Google Scholar]
- Prakash, A.J. Capsule Network for the Identification of Individuals Using Quantized ECG Signal Images. IEEE Sens. Lett. 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Erdogmus, N.; Marcel, S. Spoofing face recognition with 3D masks. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1084–1097. [Google Scholar] [CrossRef] [Green Version]
- Hadid, A.; Evans, N.; Marcel, S.; Fierrez, J. Biometrics systems under spoofing attack: An evaluation methodology and lessons learned. IEEE Signal Process. Mag. 2015, 32, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, Z.; Micheloni, C.; Foresti, G.L. Biometric liveness detection: Challenges and research opportunities. IEEE Secur. Priv. 2015, 13, 63–72. [Google Scholar] [CrossRef]
- Chan, P.P.; Liu, W.; Chen, D.; Yeung, D.S.; Zhang, F.; Wang, X.; Hsu, C.C. Face liveness detection using a flash against 2D spoofing attack. IEEE Trans. Inf. Forensics Secur. 2017, 13, 521–534. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Zeng, X. HeartID: A multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications. IEEE Access 2017, 5, 11805–11816. [Google Scholar] [CrossRef]
- Pedada, K.R.; Rao, B.; Patro, K.K.; Allam, J.P.; Jamjoom, M.M.; Samee, N.A. A novel approach for brain tumour detection using deep learning based technique. Biomed. Signal Process. Control. 2023, 82, 104549. [Google Scholar] [CrossRef]
- Patro, K.K.; Prakash, A.J.; Samantray, S.; Pławiak, J.; Tadeusiewicz, R.; Pławiak, P. A hybrid approach of a deep learning technique for real-time ECG beat detection. Int. J. Appl. Math. Comput. Sci. 2022, 32, 455–465. [Google Scholar]
- Mylnikov, L.; Efimov, N. Cross-spectrum of signals of vibrations and their application for determination of the technical condition of dynamic equipment. Int. Conf. Appl. Innov. IT (ICAIIT) 2022. [Google Scholar] [CrossRef]
- Luzianin, I.; Krause, B. Similarity measurement of biological signals using dynamic time warping algorithm. In Proceedings of the International Conference on Applied Innovation in IT, Koethen, Germany, 10 March 2016; Volume 4, pp. 65–71. [Google Scholar]
- Kaur, G.; Singh, D.; Kaur, S. Electrocardiogram (ECG) as a biometric characteristic: A review. Int. J. Emerg. Res. Manag. Technol. 2015, 4, 202–206. [Google Scholar]
- Lee, W.; Kim, S.; Kim, D. Individual biometric identification using multi-cycle electrocardiographic waveform patterns. Sensors 2018, 18, 1005. [Google Scholar] [CrossRef] [Green Version]
- Matos, A.C.; Lourenço, A.; Nascimento, J. Embedded system for individual recognition based on ECG Biometrics. Procedia Technol. 2014, 17, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Z.; Gilani, S.O.; Jamil, M. Review of fiducial and non-fiducial techniques of feature extraction in ECG based biometric systems. Indian J. Sci. Technol. 2016, 9, 850–855. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, Y.; Park, D.; Yun, B.J.; Park, K.H. Efficient fiducial point detection of ECG QRS complex based on polygonal approximation. Sensors 2018, 18, 4502. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.D.; Hamdy, M.M.; Badre, A.; Badee, V. Person identification using electrocardiograms. In Proceedings of the 2006 Canadian Conference on Electrical and Computer Engineering, Ottawa, ON, Canada, 7–10 May 2006; pp. 1–4. [Google Scholar]
- Xu, J.; Yang, G.; Wang, K.; Huang, Y.; Liu, H.; Yin, Y. Structural sparse representation with class-specific dictionary for ECG biometric recognition. Pattern Recognit. Lett. 2020, 135, 44–49. [Google Scholar] [CrossRef]
- Lee, D.T.; Yamamoto, A. Wavelet analysis: Theory and applications. Hewlett Packard J. 1994, 45, 44. [Google Scholar]
- Kyoso, M. A technique for avoiding false acceptance in ECGIDentification. In Proceedings of the IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, Kyoto, Japan, 20–22 October 2003; pp. 190–191. [Google Scholar]
- Deshmane, M.; Madhe, S. ECG based biometric human identification using convolutional neural network in smart health applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [Google Scholar]
- Musa, N.; Gital, A.Y.; Aljojo, N.; Chiroma, H.; Adewole, K.S.; Mojeed, H.A.; Faruk, N.; Abdulkarim, A.; Emmanuel, I.; Folawiyo, Y.Y.; et al. A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram. J. Ambient. Intell. Humaniz. Comput. 2022, 64, 1–74. [Google Scholar] [CrossRef]
- Srivastva, R.; Singh, A.; Singh, Y.N. PlexNet: A fast and robust ECG biometric system for human recognition. Inf. Sci. 2021, 558, 208–228. [Google Scholar] [CrossRef]
- Asgharzadeh-Bonab, A.; Amirani, M.C.; Mehri, A. Spectral entropy and deep convolutional neural network for ECG beat classification. Biocybern. Biomed. Eng. 2020, 40, 691–700. [Google Scholar] [CrossRef]
- Kim, H.; Phan, T.Q.; Hong, W.; Chun, S.Y. Physiology-based augmented deep neural network frameworks for ECG biometrics with short ECG pulses considering varying heart rates. Pattern Recognit. Lett. 2022, 156, 1–6. [Google Scholar] [CrossRef]
- Fatimah, B.; Singh, P.; Singhal, A.; Pachori, R.B. Biometric Identification From ECG Signals Using Fourier Decomposition and Machine Learning. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Rjoob, K.; Bond, R.; Finlay, D.; McGilligan, V.; Leslie, S.J.; Rababah, A.; Iftikhar, A.; Guldenring, D.; Knoery, C.; McShane, A.; et al. Machine learning and the electrocardiogram over two decades: Time series and meta-analysis of the algorithms, evaluation metrics and applications. Artif. Intell. Med. 2022, 132, 102381. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Shen, H.; Huang, K. ECG authentication method based on parallel multi-scale one-dimensional residual network with center and margin loss. IEEE Access 2019, 7, 51598–51607. [Google Scholar] [CrossRef]
- Wang, K.; Yang, G.; Huang, Y.; Yin, Y. Multi-scale differential feature for ECG biometrics with collective matrix factorization. Pattern Recognit. 2020, 102, 107211. [Google Scholar] [CrossRef]
- Homer, M.; Irvine, J.M.; Wendelken, S. A model-based approach to human identification using ECG. Opt. Photonics Glob. Homel. Secur. V Biom. Technol. Hum. Identif. VI 2009, 7306, 730625. [Google Scholar]
- Benouis, M.; Mostefai, L.; Costen, N.; Regouid, M. ECG based biometric identification using one-dimensional local difference pattern. Biomed. Signal Process. Control. 2021, 64, 102226. [Google Scholar] [CrossRef]
- Irvine, J.M.; Wiederhold, B.K.; Gavshon, L.W.; Israel, S.; McGehee, S.B.; Meyer, R.; Wiederhold, M.D. Heart rate variability: A new biometric for human identification. In Proceedings of the International Conference on Artificial Intelligence (IC-AI’01), Dallas, TX, USA, 7–9 November 2001; pp. 1106–1111. [Google Scholar]
- Wan, Y.; Yao, J. A neural network to identify human subjects with electrocardiogram signals. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 22–24 October 2008; pp. 1–4. [Google Scholar]
- Chan, A.D.; Hamdy, M.M.; Badre, A.; Badee, V. Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 2008, 57, 248–253. [Google Scholar] [CrossRef]
- Ye, C.; Coimbra, M.T.; Kumar, B.V. Investigation of human identification using two-lead electrocardiogram (ECG) signals. In Proceedings of the 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington, DC, USA, 27–29 September 2010; pp. 1–8. [Google Scholar]
- Sahebi, G.; Majd, A.; Ebrahimi, M.; Plosila, J.; Tenhunen, H. A reliable weighted feature selection for auto medical diagnosis. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Emden, Germany, 24–26 July 2017; pp. 985–991. [Google Scholar]
- Günal, S. Hybrid feature selection for text classification. Turk. J. Electr. Eng. Comput. Sci. 2012, 20, 1296–1311. [Google Scholar] [CrossRef]
- Teodoro, F.G.S.; Peres, S.M.; Lima, C.A. Feature selection for biometric recognition based on electrocardiogram signals. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 2911–2920. [Google Scholar]
- Odinaka, I.; Lai, P.H.; Kaplan, A.D.; O’Sullivan, J.A.; Sirevaag, E.J.; Kristjansson, S.D.; Sheffield, A.K.; Rohrbaugh, J.W. ECG biometrics: A robust short-time frequency analysis. In Proceedings of the 2010 IEEE International Workshop on Information Forensics and Security, Seattle, WA, USA, 12–15 December 2010; pp. 1–6. [Google Scholar]
- Patro, K.K.; Jaya Prakash, A.; Jayamanmadha Rao, M.; Rajesh Kumar, P. An efficient optimized feature selection with machine learning approach for ECG biometric recognition. IETE J. Res. 2022, 68, 2743–2754. [Google Scholar] [CrossRef]
- Labati, R.D.; Muñoz, E.; Piuri, V.; Sassi, R.; Scotti, F. Deep-ECG: Convolutional neural networks for ECG biometric recognition. Pattern Recognit. Lett. 2019, 126, 78–85. [Google Scholar] [CrossRef]
- Hong, P.L.; Hsiao, J.Y.; Chung, C.H.; Feng, Y.M.; Wu, S.C. ECG biometric recognition: Template-free approaches based on deep learning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2633–2636. [Google Scholar]
- Lee, J.A.; Kwak, K.C. Personal Identification Using an Ensemble Approach of 1D-LSTM and 2D-CNN with Electrocardiogram Signals. Appl. Sci. 2022, 12, 2692. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Deng, Y.; Zhang, X. ECG authentication system design incorporating a convolutional neural network and generalized S-Transformation. Comput. Biol. Med. 2018, 102, 168–179. [Google Scholar] [CrossRef] [PubMed]
- AlDuwaile, D.A.; Islam, M.S. Using Convolutional Neural Network and a Single Heartbeat for ECG Biometric Recognition. Entropy 2021, 23, 733. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.J.; Patro, K.K.; Hammad, M.; Tadeusiewicz, R.; Pławiak, P. BAED: A secured biometric authentication system using ECG signal based on deep learning techniques. Biocybern. Biomed. Eng. 2022, 42, 1081–1093. [Google Scholar] [CrossRef]
- Boumbarov, O.; Velchev, Y.; Sokolov, S. ECG personal identification in subspaces using radial basis neural networks. In Proceedings of the 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Rende, Italy, 21–23 September; pp. 446–451.
- Agrafioti, F.; Hatzinakos, D. ECG biometric analysis in cardiac irregularity conditions. Signal Image Video Process. 2009, 3, 329. [Google Scholar] [CrossRef]
- Ghofrani, N.; Bostani, R. Reliable features for an ECG-based biometric system. In Proceedings of the 2010 17th Iranian Conference of Biomedical Engineering (ICBME), Isfahan, Iran, 3–4 November 2010; pp. 1–5. [Google Scholar]
- Choi, H.S.; Lee, B.; Yoon, S. Biometric authentication using noisy electrocardiograms acquired by mobile sensors. IEEE Access 2016, 4, 1266–1273. [Google Scholar] [CrossRef]
- Shen, T.W.D.; Tompkins, W.J.; Hu, Y.H. Implementation of a one-lead ECG human identification system on a normal population. J. Eng. Comput. Innov. 2010, 2, 12–21. [Google Scholar]
- Pinto, J.R.; Cardoso, J.S.; Lourenço, A.; Carreiras, C. Towards a continuous biometric system based on ECG signals acquired on the steering wheel. Sensors 2017, 17, 2228. [Google Scholar] [CrossRef] [Green Version]
- Bashar, M.K.; Ohta, Y.; Yoshida, H. ECG-based biometric authentication using mulscale descriptors: ECG-based biometric authentication. In Proceedings of the 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 28–30 November 2015; pp. 1–4. [Google Scholar]
- Tan, R.; Perkowski, M. Toward improving electrocardiogram (ECG) biometric verification using mobile sensors: A two-stage classifier approach. Sensors 2017, 17, 410. [Google Scholar] [CrossRef]
- Komeili, M.; Louis, W.; Armanfard, N.; Hatzinakos, D. Feature selection for nonstationary data: Application to human recognition using medical biometrics. IEEE Trans. Cybern. 2017, 48, 1446–1459. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.G.; Ko, H.; Pan, S.B. A study on user recognition using 2D ECG based on ensemble of deep convolutional neural networks. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 1859–1867. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.R.; Cardoso, J.S. An end-to-end convolutional neural network for ECG-based biometric authentication. In Proceedings of the 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), Tampa, FL, USA, 23–26 September 2019; pp. 1–8. [Google Scholar]
- El Boujnouni, I.; Zili, H.; Tali, A.; Tali, T.; Laaziz, Y. A wavelet-based capsule neural network for ECG biometric identification. Biomed. Signal Process. Control. 2022, 76, 103692. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Patro, K.K.; Rajesh Kumar, P. A Novel frequency-time based approach for the detection of characteristic waves in electrocardiogram signal. In Microelectronics, Electromagnetics and Telecommunications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 57–67. [Google Scholar]
- Thomas, M.; Das, M.K.; Ari, S. Automatic ECG arrhythmia classification using dual tree complex wavelet based features. AEU-Int. J. Electron. Commun. 2015, 69, 715–721. [Google Scholar] [CrossRef]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML Deep Learning Workshop, Lille, France, 6–11 July 2015; Volume 2. [Google Scholar]
- Yang, L.; Chen, Y.; Song, S.; Li, F.; Huang, G. Deep Siamese networks based change detection with remote sensing images. Remote Sens. 2021, 13, 3394. [Google Scholar] [CrossRef]
- Shen, C.; Jin, Z.; Zhao, Y.; Fu, Z.; Jiang, R.; Chen, Y.; Hua, X.S. Deep siamese network with multi-level similarity perception for person re-identification. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1942–1950. [Google Scholar]
- Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 2020, 404, 109136. [Google Scholar] [CrossRef] [Green Version]
- Patro, K.K.; Reddi, S.P.R.; Khalelulla, S.E.; Kumar, P.R.; Shankar, K. ECG data optimization for biometric human recognition using statistical distributed machine learning algorithm. J. Supercomput. 2020, 76, 858–875. [Google Scholar] [CrossRef]
- Jyotishi, D.; Dandapat, S. An LSTM-Based Model for Person Identification Using ECG Signal. IEEE Sens. Lett. 2020, 4, 1–4. [Google Scholar] [CrossRef]
- Ciocoiu, I.B.; Cleju, N. Off-Person ECG Biometrics Using Spatial Representations and Convolutional Neural Networks. IEEE Access 2020, 8, 218966–218981. [Google Scholar] [CrossRef]
- Lynn, H.M.; Pan, S.B.; Kim, P. A deep bidirectional GRU network model for biometric electrocardiogram classification based on recurrent neural networks. IEEE Access 2019, 7, 145395–145405. [Google Scholar] [CrossRef]
Layer (Type) | Parameters (No. of Filters and Kernel) | Stride | Output Shape |
---|---|---|---|
Input | - | - | (112, 112) |
Conv2d_1 Activation_1 | (32, 3, 3) | 1 | (110, 110) |
Max_pool_1 | (2, 2) | - | (55, 55) |
Conv2d_2 Activation_2 | (64, 3, 3) | 1 | (53, 53) |
Max_pool_2 | (2, 2) | - | (26, 26) |
Flatten | - | - | 89856 |
Dense | - | - | 90 |
Label 1 | Label 0 | |
---|---|---|
Total beats | 20 beats from each person gives 190 Images of 1 beats in a frame so for 90 person total number of images = 15,390 (190∗90) | From the first person 5 images consisting of 1 beat in frame paired with 38 random persons = 17,100 (90∗5∗38) |
Training Images | 13,680 | 13,680 |
Testing Images | 3420 | 3420 |
Label 1 | Label 0 | |
---|---|---|
Total Images | 20 beats for each person gives 171 Images of 2 beats in a frame, so for 90 people the total number of images = 15,390 (171∗90) | From the first person 5 images consisting of 1 beat in frame paired with 34 random persons = 15,300 (90∗5∗34) |
Training Images | 12,312 | 12,240 |
Testing Images | 3078 | 3060 |
Hyper Parameter | Siamese Network | ||
---|---|---|---|
Single Beat as an Image | Dual Beat as an Image | Triple Beat as an Image | |
Learning rate | 0.01 | 0.01 | 0.01 |
No. of Epochs | 550 | 370 | 450 |
Accuracy | 91.0 | 99.85 | 99.90 |
Batch size | 8 | 8 | 8 |
Optimizer | Adam | Adam | Adam |
Loss function | Contrastive | Contrastive | Contrastive |
Training time | 1520 s | 1324 s | 1442 s |
Label 1 | Label 0 | |
---|---|---|
Total Images | 20 beats for each person gives 153 images of 3 beats in a frame, so for 90 people the total number of images = 13,770 (153∗90) | From the first person, 5 images consisting of 1 beat in frame paired with 38 random person = 13,500 (90∗5∗30) |
Training Images | 11,016 | 10,800 |
Testing Images | 2754 | 2700 |
Method | Accuracy (%) | Sensitivity (%) | Specificity (%) | F1-Score (%) |
---|---|---|---|---|
Single beats an image | 92.34 ± 0.362 | 90.37 ± 0.428 | 88.61 ± 0.416 | 89.19 ± 0.450 |
Dual beat as an Image | 99.78 ± 0.212 | 99.44 ± 0.302 | 99.15 ± 0.351 | 98.89 ± 0.378 |
Triple beat as an image | 99.89 ± 0.112 | 99.24 ± 0.241 | 99.19 ± 0.277 | 98.87 ± 0.342 |
Different Probabilities | |||
---|---|---|---|
Record Number | P1 | P2 | P3–P90 |
ECGID-1 | 0.95 | 0.10 | 0–0.25 |
ECGID-2 | 0.09 | 0.93 | 0–0.25 |
Performance Parameter | Siamese Network | ||
---|---|---|---|
Single Beat as an Image | Dual Beat as an Image | Triple Beat as an Image | |
Accuracy (%) | 91.0 | 99.85 | 99.90 |
Sensitivity (%) | 89.90 | 99.30 | 99.10 |
Specificity (%) | 86.85 | 98.85 | 99.0 |
Positive Predictivity (%) | 90.75 | 99.76 | 98.78 |
F1-Score (%) | 88.81 | 98.54 | 98.85 |
MCC | 0.921 | 0.974 | 0.989 |
AUC | 0.914 | 0.985 | 0.991 |
Conv2D_1 with ReLu | Conv2D_1 with Sigmoid | Conv2D_1 with Customized Activation | Conv2D_2 with ReLu | Conv2D_2 with Sigmoid | Conv2D_2 with Customized Activation | Accuracy |
---|---|---|---|---|---|---|
YES | NO | NO | YES | NO | NO | 93.24 |
NO | YES | NO | YES | NO | NO | 94.41 |
NO | YES | NO | NO | YES | NO | 95.56 |
NO | NO | YES | NO | YES | NO | 97.88 |
NO | NO | YES | NO | NO | YES | 99.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, A.J.; Patro, K.K.; Samantray, S.; Pławiak, P.; Hammad, M. A Deep Learning Technique for Biometric Authentication Using ECG Beat Template Matching. Information 2023, 14, 65. https://doi.org/10.3390/info14020065
Prakash AJ, Patro KK, Samantray S, Pławiak P, Hammad M. A Deep Learning Technique for Biometric Authentication Using ECG Beat Template Matching. Information. 2023; 14(2):65. https://doi.org/10.3390/info14020065
Chicago/Turabian StylePrakash, Allam Jaya, Kiran Kumar Patro, Saunak Samantray, Paweł Pławiak, and Mohamed Hammad. 2023. "A Deep Learning Technique for Biometric Authentication Using ECG Beat Template Matching" Information 14, no. 2: 65. https://doi.org/10.3390/info14020065
APA StylePrakash, A. J., Patro, K. K., Samantray, S., Pławiak, P., & Hammad, M. (2023). A Deep Learning Technique for Biometric Authentication Using ECG Beat Template Matching. Information, 14(2), 65. https://doi.org/10.3390/info14020065