Interactive Web-Based Visual Analysis on Network Traffic Data
Abstract
:1. Introduction
- We designed a new web-based interactive visual analysis system to assist the user in performing a continuous visual analysis with updated visual representation.
- To the best of our knowledge, our work is the first visual analysis system that utilizes uncertainty quantification and discrete wavelet transform in analyzing network traffic data.
- We performed a series of use-case studies to determine the effectiveness of the system. The study results prove the usefulness of the system.
2. Related Work
3. Data Wrangling
3.1. Dataset
3.2. Feature Extraction
3.3. Uncertainty Quantification
4. Web-Based Visual Analysis System
4.1. User Interactions
4.2. Network View—Overview Representation
4.3. Uncertainty View—Uncertainty Quantification and Representation
4.4. Detailed Analysis View
5. Case Studies
6. Discussion
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, S.Y.; Jeong, B.K.; Jeong, D.H. Evaluating visualization approaches to detect abnormal activities in network traffic data. Int. J. Inf. Secur. 2021, 20, 331–345. [Google Scholar] [CrossRef]
- Shiravi, H.; Shiravi, A.; Ghorbani, A.A. A Survey of Visualization Systems for Network Security. IEEE Trans. Vis. Comput. Graph. 2012, 18, 1313–1329. [Google Scholar] [CrossRef] [PubMed]
- Chishtie, J.; Bielska, I.A.; Barrera, A.; Marchand, J.S.; Imran, M.; Tirmizi, S.F.A.; Turcotte, L.A.; Munce, S.; Shepherd, J.; Senthinathan, A.; et al. Interactive Visualization Applications in Population Health and Health Services Research: Systematic Scoping Review. J. Med. Internet Res. 2022, 24, e27534. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Liu, S.; Tan, L.; Shi, C.; Song, Y.; Gao, Z.; Qu, H.; Tong, X. Textflow: Towards better understanding of evolving topics in text. IEEE Trans. Vis. Comput. Graph. 2011, 17, 2412–2421. [Google Scholar] [CrossRef]
- Ma, J.; Liao, I.; Ma, K.L.; Frazier, J. Living liquid: Design and evaluation of an exploratory visualization tool for museum visitors. IEEE Trans. Vis. Comput. Graph. 2012, 18, 2799–2808. [Google Scholar] [CrossRef]
- Godfrey, P.; Gryz, J.; Lasek, P. Interactive visualization of large data sets. IEEE Trans. Knowl. Data Eng. 2016, 28, 2142–2157. [Google Scholar] [CrossRef]
- Keim, D.A. Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 2002, 8, 1–8. [Google Scholar] [CrossRef]
- Lakkaraju, K.; Bearavolu, R.; Slagell, A.; Yurcik, W.; North, S. Closing-the-loop in nvisionip: Integrating discovery and search in security visualizations. In Proceedings of the IEEE Workshop on Visualization for Computer Security, (VizSEC 05), Minneapolis, MI, USA, 26 October 2005; pp. 75–82. [Google Scholar] [CrossRef] [Green Version]
- Foresti, S.; Agutter, J.; Livnat, Y.; Moon, S.; Erbacher, R. Visual correlation of network alerts. IEEE Comput. Graph. Appl. 2006, 26, 48–59. [Google Scholar] [CrossRef]
- Goodall, J.; Lutters, W.; Rheingans, P.; Komlodi, A. Preserving the big picture: Visual network traffic analysis with TNV. In Proceedings of the IEEE Workshop on Visualization for Computer Security, (VizSEC 05), Minneapolis, MI, USA, 26 October 2005; pp. 47–54. [Google Scholar] [CrossRef]
- Koike, H.; Ohno, K.; Koizumi, K. Visualizing cyber attacks using IP matrix. In Proceedings of the IEEE Workshop on Visualization for Computer Security, (VizSEC 05), Minneapolis, MI, USA, 26 October 2005; pp. 91–98. [Google Scholar] [CrossRef]
- Krokos, E.; Rowden, A.; Whitley, K.; Varshney, A. Visual Analytics for Root DNS Data. In Proceedings of the 2018 IEEE Symposium on Visualization for Cyber Security (VizSec), Berlin, Germany, 22 October 2018; pp. 1–8. [Google Scholar]
- Gove, R.; Deason, L. Visualizing Automatically Detected Periodic Network Activity. In Proceedings of the 2018 IEEE Symposium on Visualization for Cyber Security (VizSec), Berlin, Germany, 22 October 2018; pp. 1–8. [Google Scholar]
- Cappers, B.C.M.; van Wijk, J.J. Understanding the context of network traffic alerts. In Proceedings of the 2016 IEEE Symposium on Visualization for Cyber Security (VizSec), Baltimore, MD, USA, 24 October 2016; pp. 1–8. [Google Scholar]
- Xiao, L.; Gerth, J.; Hanrahan, P. Enhancing Visual Analysis of Network Traffic Using a Knowledge Representation. In Proceedings of the 2006 IEEE Symposium On Visual Analytics Science And Technology, Baltimore, MD, USA, 31 October–2 November 2006; pp. 107–114. [Google Scholar] [CrossRef] [Green Version]
- Nunnally, T.; Abdullah, K.; Uluagac, A.S.; Copeland, J.A.; Beyah, R. NAVSEC: A Recommender System for 3D Network Security Visualizations. In Proceedings of the Tenth Workshop on Visualization for Cyber Security, Atlanta, GA, USA, 28–29 October 2013; pp. 41–48. [Google Scholar] [CrossRef]
- Cai, Y.; Franco, R.d.M. Interactive Visualization of Network Anomalous Events. In Proceedings of the 9th International Conference on Computational Science: Part I, Baton Rouge, LA, USA, 25–27 May 2009; pp. 450–459. [Google Scholar] [CrossRef] [Green Version]
- Theron, R.; Magán-Carrión, R.; Camacho, J.; Fernndez, G.M. Network-wide intrusion detection supported by multivariate analysis and interactive visualization. In Proceedings of the 2017 IEEE Symposium on Visualization for Cyber Security (VizSec), Phoenix, AZ, USA, 2 October 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Tremel, T.; Kögel, J.; Jauernig, F.; Meier, S.; Thom, D.; Becker, F.; Müller, C.; Koch, S. VITALflow: Visual Interactive Traffic Analysis with NetFlow. In Proceedings of the 2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25–29 April 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Angelini, M.; Prigent, N.; Santucci, G. PERCIVAL: Proactive and reactive attack and response assessment for cyber incidents using visual analytics. In Proceedings of the 2015 IEEE Symposium on Visualization for Cyber Security (VizSec), Chicago, IL, USA, 25 October 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Zong, W.; Chow, Y.W.; Susilo, W. Interactive three-dimensional visualization of network intrusion detection data for machine learning. Future Gener. Comput. Syst. 2020, 102, 292–306. [Google Scholar] [CrossRef]
- Elmqvist, N.; Tsigas, P. A Taxonomy of 3D Occlusion Management for Visualization. IEEE Trans. Vis. Comput. Graph. 2008, 14, 1095–1109. [Google Scholar] [CrossRef]
- Zhang, T.; Liao, Q.; Shi, L. Bridging the Gap of Network Management and Anomaly Detection through Interactive Visualization. In Proceedings of the 2014 IEEE Pacific Visualization Symposium, Yokohama, Japan, 4–7 March 2014; pp. 253–257. [Google Scholar] [CrossRef]
- Hao, L.; Healey, C.G.; Hutchinson, S.E. Flexible Web Visualization for Alert-Based Network Security Analytics. In Proceedings of the Tenth Workshop on Visualization for Cyber Security, Atlanta, GA, USA, 28–29 October 2013; pp. 33–40. [Google Scholar] [CrossRef] [Green Version]
- Arendt, D.L.; Burtner, R.; Best, D.M.; Bos, N.D.; Gersh, J.R.; Piatko, C.D.; Paul, C.L. Ocelot: User-centered design of a decision support visualization for network quarantine. In Proceedings of the 2015 IEEE Symposium on Visualization for Cyber Security (VizSec), Chicago, IL, USA, 25 October 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Ulmer, A.; Sessler, D.; Kohlhammer, J. Netcapvis: Web-based progressive visual analytics for network packet captures. In Proceedings of the 2019 IEEE Symposium on Visualization for Cyber Security (VizSec), Vancouver, BC, Canada, 23 October 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Chen, S.; Guo, C.; Yuan, X.; Merkle, F.; Schaefer, H.; Ertl, T. OCEANS: Online Collaborative Explorative Analysis on Network Security. In Proceedings of the Eleventh Workshop on Visualization for Cyber Security, Paris, France, 10 November 2014; pp. 1–8. [Google Scholar] [CrossRef]
- Cherepanov, I.; Ulmer, A.; Joewono, J.G.; Kohlhammer, J. Visualization Of Class Activation Maps To Explain AI Classification Of Network Packet Captures. In Proceedings of the 2022 IEEE Symposium on Visualization for Cyber Security (VizSec), Oklahoma City, OK, USA, 19 October 2022; pp. 1–11. [Google Scholar] [CrossRef]
- Schufrin, M.; Lücke-Tieke, H.; Kohlhammer, J. Visual Firewall Log Analysis—At the Border Between Analytical and Appealing. In Proceedings of the 2022 IEEE Symposium on Visualization for Cyber Security (VizSec), Oklahoma City, OK, USA, 19 October 2022; pp. 1–11. [Google Scholar] [CrossRef]
- Ji, S.Y.; Jeong, B.K.; Choi, S.; Jeong, D.H. A multi-level intrusion detection method for abnormal network behaviors. J. Netw. Comput. Appl. 2016, 62, 9–17. [Google Scholar] [CrossRef]
- Braun, L.; Volke, M.; Schlamp, J.; Bodisco, A.; Carle, G. Flow-Inspector: A Framework for Visualizing Network Flow Data Using Current Web Technologies. Computing 2014, 96, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Springer, J.; Bebis, G.; Gunes, M.H. A survey of network flow applications. J. Netw. Comput. Appl. 2013, 36, 567–581. [Google Scholar] [CrossRef]
- Anh Huynh, N.; Keong Ng, W.; Ulmer, A.; Kohlhammer, J. Uncovering periodic network signals of cyber attacks. In Proceedings of the 2016 IEEE Symposium on Visualization for Cyber Security (VizSec), Baltimore, MD, USA, 24 October 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Cirillo, S.; Desiato, D.; Breve, B. CHRAVAT—Chronology Awareness Visual Analytic Tool. In Proceedings of the 2019 23rd International Conference Information Visualisation (IV), Paris, France, 2–5 July 2019; pp. 255–260. [Google Scholar] [CrossRef]
- Sharafaldin., I.; Habibi Lashkari., A.; Ghorbani., A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy, Madeira, Portugal, 22–24 February 2018; pp. 108–116. [Google Scholar] [CrossRef]
- Kandel, S.; Heer, J.; Plaisant, C.; Kennedy, J.; van Ham, F.; Riche, N.H.; Weaver, C.; Lee, B.; Brodbeck, D.; Buono, P. Research Directions in Data Wrangling: Visualizations and Transformations for Usable and Credible Data. Inf. Vis. J. 2011, 10, 271–288. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, F.; Zseby, T. Analysis of network traffic features for anomaly detection. Mach. Learn. 2015, 101, 59–84. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.Y.; Kamhoua, C.; Leslie, N.; Jeong, D.H. An Effective Approach to Classify Abnormal Network Traffic Activities using Wavelet Transform. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019. [Google Scholar] [CrossRef]
- Ji, S.Y.; Jeong, B.K.; Kamhoua, C.; Leslie, N.; Jeong, D.H. Forecasting network events to estimate attack risk: Integration of wavelet transform and vector auto regression with exogenous variables. J. Netw. Comput. Appl. 2022, 203, 103392. [Google Scholar] [CrossRef]
- Jeong, D.H.; Jeong, B.K.; Ji, S.Y. Designing a hybrid approach with computational analysis and visual analytics to detect network intrusions. In Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 9–11 January 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Jøsang, A. Subjective Logic: A Formalism for Reasoning Under Uncertainty, 1st ed.; Springer Publishing Company: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Jøsang, A.; Cho, J.H.; Chen, F. Uncertainty Characteristics of Subjective Opinions. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 1998–2005. [Google Scholar] [CrossRef] [Green Version]
- Elmqvist, N.; Vande Moere, A.; Jetter, H.C.; Cernea, D.; Reiterer, H.; Jankun-Kelly, T.J. Fluid Interaction for Information Visualization. Inf. Vis. 2011, 10, 327–340. [Google Scholar] [CrossRef]
- Roberts, J.C. State of the Art: Coordinated & Multiple Views in Exploratory Visualization. In Proceedings of the Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization, Zurich, Switzerland, 2 July 2007; pp. 61–71. [Google Scholar]
- Harrison, L.; Lu, A. The future of security visualization: Lessons from network visualization. IEEE Netw. 2012, 26, 6–11. [Google Scholar] [CrossRef]
- Bigelow, A.; Drucker, S.; Fisher, D.; Meyer, M. Reflections on How Designers Design with Data. In Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces, Como, Italy, 27–29 May 2014; pp. 17–24. [Google Scholar] [CrossRef]
- Hullman, J.R.; Adar, E.; Shah, P. Benefitting InfoVis with Visual Difficulties. IEEE Trans. Vis. Comput. Graph. 2011, 17, 2213–2222. [Google Scholar] [CrossRef]
- Jain, N.; Bhansali, A.; Mehta, D. AngularJS: A modern MVC framework in JavaScript. J. Glob. Res. Comput. Sci. 2014, 5, 17–23. [Google Scholar]
- van Wijk, J.; Nuij, W. Smooth and efficient zooming and panning. In Proceedings of the IEEE Symposium on Information Visualization 2003 (IEEE Cat. No. 03TH8714), Seattle, WA, USA, 19–21 October 2003; pp. 15–23. [Google Scholar]
- van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- McInnes, L.; Healy, J.; Saul, N.; Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 2018, 3, 861. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar] [CrossRef]
- Inselberg, A. Parallel Coordinates Visual Multidimensional Geometry and Its Applications, 1st ed.; Springer Series in Solid-State Sciences; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Heinrich, J.; Weiskopf, D. State of the Art of Parallel Coordinates. In Proceedings of the Eurographics, Girona, Spain, 6–10 May 2013. [Google Scholar]
- Chen, Y.Z.; Huang, Z.G.; Xu, S.; Lai, Y.C. Spatiotemporal patterns and predictability of cyberattacks. PLoS ONE 2015, 10, e0124472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobak, D.; Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 2019, 10, 5416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobak, D.; Linderman, G.C. Initialization is critical for preserving global data structure in both t-SNE and UMAP. Nat. Biotechnol. 2021, 39, 156–157. [Google Scholar] [CrossRef]
- Eick, S.G.; Karr, A.F. Visual Scalability. J. Comput. Graph. Stat. 2002, 11, 22–43. [Google Scholar] [CrossRef]
- Lu, L.F.; Huang, M.L.; Zhang, J. Two Axes Re-Ordering Methods in Parallel Coordinates Plots. J. Vis. Lang. Comput. 2016, 33, 3–12. [Google Scholar] [CrossRef]
- Tilouche, S.; Partovi Nia, V.; Bassetto, S. Parallel coordinate order for high-dimensional data. Stat. Anal. Data Mining ASA Data Sci. J. 2021, 14, 501–515. [Google Scholar] [CrossRef]
- Hinton, G.E.; Roweis, S. Stochastic Neighbor Embedding. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, USA, 9–14 December 2002; Volume 15. [Google Scholar]
- Nakashima, M.; Sim, A.; Kim, Y.; Kim, J.; Kim, J. Automated Feature Selection for Anomaly Detection in Network Traffic Data. ACM Trans. Manage. Inf. Syst. 2021, 12. [Google Scholar] [CrossRef]
- Green, T.M.; Ribarsky, W.; Fisher, B. Building and Applying a Human Cognition Model for Visual Analytics. Inf. Vis. 2009, 8, 1–13. [Google Scholar] [CrossRef]
Publication | Hao et al. [24], 2013 | Zhang et al. [23], 2014 | Chen et al. [27], 2014 | Arendt et al. [25], 2015 | Cappers and van Wijk [14], 2016 | Anh Huynh et al. [33], 2016 | Theron et al. [18], 2017 | Gove and Deason [13], 2018 | Ulmer et al. [26], 2019 | Cirillo et al. [34], 2019 | Tremel et al. [19], 2022 | Cherepanov et al. [28], 2022 | Schufrin et al. [29], 2022 | Proposed System |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Network flow data and Snort alerts | VAST 2013 mini challenge dataset | VAST 2013 mini challenge dataset | VAST 2013 mini challenge dataset | Network flow with Wireshark | DARPA 1999 dataset and botnet dataset from UNB | UGR16 | Bro network data | Network flow (PCAP) with Wireshark | Network flow with Scapy | NetFlow data | Network flow (PCAP) with Wireshark | Firewall log | CIC-IDS2017 [35] |
Brushing and Linking † | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ||
Selection and Manipulation † | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | △ | ◯ | ◯ | ◯ | ||
Zooming and Panning † | △ | ◯ | ◯ | ◯ | ◯ | △ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | |
Time Series Feature Extraction Analysis ‡ | Discrete Fourier Transform | Discrete Fourier Transform | Discrete Wavelet Transform | |||||||||||
Dimensionality reduction ‡ | ◯ | ◯ | ◯ | |||||||||||
Web-based System ‡ | ◯ | ◯ | ◯ | ◯ | △ | ◯ | △ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ |
Time-line Visualization § | △ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | △ | ◯ | ◯ | |||
Bar and line graphs § | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ||
Scatterplot § | ◯ | ◯ | ◯ | ◯ | ||||||||||
Node-link diagram § | ◯ | ◯ | circle packing (Petri dish) | ◯ | ◯ | ◯ | ◯ | |||||||
Heatmap § | ◯ | ◯ | ◯ | ◯ | ◯ | |||||||||
Parallel coordinates § | ◯ | ◯ | ◯ | |||||||||||
Unique Visualization Approaches § | Ring graph | Petri dish (a hybrid hierarchical/ node-link visualization) | Stacked histogram | Hive plot | Geolocation vis. of the packet stream | Cluster visualization with a flexible analytical tool | Uncertainty visualization | |||||||
Case Study ¶ | △ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ||||
User Evaluation ¶ | ◯ | ◯ | ◯ | ◯ |
Monday, 3 July 2017∼Friday, 7 July 2017 | Benign (# of Normal Events) | Attack (# of Abnormal Events) | Included Attack Types | Dropped Null Instances |
---|---|---|---|---|
Monday | 529,918 | 0 | None | 64 |
Tuesday | 431,873 | 13,835 | Brute Force attack | 201 |
Wednesday | 439,972 | 251,723 | DoS/DDoS | 1008 |
Thursday | 456,714 | 2216 | Web Attack and Infiltration | 38 |
Friday | 414,275 | 288,923 | Botnet and Port Scan | 47 |
Benign (# of Normal Events) | Attack (# of Abnormal Events) | Initiated Attack Types and their # of Events | Unknown Attack (# of Abnormal Events) | |
---|---|---|---|---|
Monday | 529,918 | - | - | - |
Tuesday | 432,074 | 13,835 | [Brute Force] FTP-Patator (9:20–10:20): 7937 SSH-Patator (14:00–15:00): 4993 | 905 |
Wednesday | 440,031 | 252,349 | [DoS/DDoS] DoS slowloris (9:47–10:10): 5464 DoS Slowhttptest (10:14–10:35): 5371 DoS Hulk (10:43–11:00): 230,726 DoS GoldenEye (11:10–11:23): 10,293 [SSL Attack] Heartbleed Port 444 (15:12–15:32): 11 | 483 |
Thursday | 456,762 | 2217 | [Web Attack] Brute Force (9:20–10:00): 1494 XSS (10:15–10:35): 652 SQL Injection (10:40–10:42): 21 [Infiltration Attack] Meta exploit Win Vista (14:19–14:35): 4 Cool disk–MAC (14:53–15:00): 0 Win Vista (15:04–15:45): 18 | 28 |
Friday | 414,322 | 288,923 | Botnet ARES (10:02–11:02): 1472 [Port Scan] Firewall Rule on (13:55–14:35): 289 Firewall Rule off (14:51–15:29): 158,558 DDoS LOIT (15:56–16:16): 128,027 | 577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, D.H.; Cho, J.-H.; Chen, F.; Kaplan, L.; Jøsang, A.; Ji, S.-Y. Interactive Web-Based Visual Analysis on Network Traffic Data. Information 2023, 14, 16. https://doi.org/10.3390/info14010016
Jeong DH, Cho J-H, Chen F, Kaplan L, Jøsang A, Ji S-Y. Interactive Web-Based Visual Analysis on Network Traffic Data. Information. 2023; 14(1):16. https://doi.org/10.3390/info14010016
Chicago/Turabian StyleJeong, Dong Hyun, Jin-Hee Cho, Feng Chen, Lance Kaplan, Audun Jøsang, and Soo-Yeon Ji. 2023. "Interactive Web-Based Visual Analysis on Network Traffic Data" Information 14, no. 1: 16. https://doi.org/10.3390/info14010016
APA StyleJeong, D. H., Cho, J. -H., Chen, F., Kaplan, L., Jøsang, A., & Ji, S. -Y. (2023). Interactive Web-Based Visual Analysis on Network Traffic Data. Information, 14(1), 16. https://doi.org/10.3390/info14010016