Edge and Fog Computing Business Value Streams through IoT Solutions: A Literature Review for Strategic Implementation
Abstract
:1. Introduction
2. Methodology and Data
2.1. Prior Literature Reviews
2.2. Article Selection
2.3. Classification Framework
3. Results
3.1. Edge and Fog Computing as Value Drivers of IoT
3.2. Open Issues, Challenges, and Resolutions
3.2.1. Overview of the Open Issues
3.2.2. Edge–Fog–IoT Capabilities Orchestration and Points of Concern
3.2.3. Privacy and Security
3.2.4. Influence on People
3.3. Value Levers and Streams
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oberländer, A.M.; Röglinger, M.; Rosemann, M.; Kees, A. Conceptualizing Business-to-Thing Interactions—A Sociomaterial Perspective on the Internet of Things. Eur. J. Inf. Syst. 2018, 27, 486–502. [Google Scholar] [CrossRef]
- Puschel, L.C.; Roglinger, M.; Brandt, R. Unblackboxing Smart Things—A Multilayer Taxonomy and Clusters of Nontechnical Smart Thing Characteristics. IEEE Trans. Eng. Manag. 2022, 69, 2129–2143. [Google Scholar] [CrossRef]
- Baltuttis, D.; Häckel, B.; Jonas, C.M.; Oberländer, A.M.; Röglinger, M.; Seyfried, J. Conceptualizing and Assessing the Value of Internet of Things Solutions. J. Bus. Res. 2022, 140, 245–263. [Google Scholar] [CrossRef]
- Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey. J. Syst. Archit. 2019, 98, 289–330. [Google Scholar] [CrossRef]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and It’s Role in the Internet of Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (MCC’12), New York, NY, USA, 17 August 2012; ACM: New York, NY, USA, 2012; pp. 13–16. [Google Scholar]
- Alli, A.A.; Alam, M.M. The Fog Cloud of Things: A Survey on Concepts, Architecture, Standards, Tools, and Applications. Internet Things 2020, 9, 100–177. [Google Scholar] [CrossRef]
- Laroui, M.; Nour, B.; Moungla, H.; Cherif, M.A.; Afifi, H.; Guizani, M. Edge and Fog Computing for IoT: A Survey on Current Research Activities & Future Directions. Comput. Commun. 2021, 180, 210–231. [Google Scholar]
- Bilgeri, D.; Wortmann, F. Barriers to IoT Business Model Innovation. In Proceedings of the der 13. Internationalen Tagung Wirtschaftsinformatik, St. Gallen, Switzerland, 12–15 February 2017; pp. 987–990. [Google Scholar]
- Del Giudice, M. Discovering the Internet of Things (IoT) within the Business Process Management: A Literature Review on Technological Revitalization. Bus. Process Manag. J. 2016, 22, 263–270. [Google Scholar] [CrossRef]
- Huber, R.X.R.; Püschel, L.C.; Röglinger, M. Capturing Smart Service Systems: Development of a Domain-specific Modelling Language. Inf. Syst. J. 2019, 29, 1207–1255. [Google Scholar] [CrossRef]
- Kasilingam, D.; Krishna, R. Understanding the Adoption and Willingness to Pay for Internet of Things Services. Int. J. Consum. Stud. 2022, 46, 102–131. [Google Scholar] [CrossRef]
- Sheth, A. Internet of Things to Smart IoT through Semantic, Cognitive, and Perceptual Computing. IEEE Intell. Syst. 2016, 31, 108–112. [Google Scholar] [CrossRef]
- Bilgeri, D.; Fleisch, E.; Gebauer, H.; Wortmann, F. Driving Process Innovation with IoT Field Data. MISQE 2019, 18, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Côrte-Real, N.; Ruivo, P.; Oliveira, T. Leveraging Internet of Things and Big Data Analytics Initiatives in European and American Firms: Is Data Quality a Way to Extract Business Value? Inf. Manag. 2020, 57, 103–141. [Google Scholar] [CrossRef]
- Fichman, R.G.; Dos Santos, B.L.; Zheng, Z.; Boston College; University of Louisville. University of Texas at Dallas Digital Innovation as a Fundamental and Powerful Concept in the Information Systems Curriculum. MISQ 2014, 38, 329–343. [Google Scholar] [CrossRef]
- Haaker, T.; Ly, P.T.M.; Nguyen-Thanh, N.; Nguyen, H.T.H. Business Model Innovation through the Application of the Internet-of-Things: A Comparative Analysis. J. Bus. Res. 2021, 126, 126–136. [Google Scholar] [CrossRef]
- Paiola, M.; Gebauer, H. Internet of Things Technologies, Digital Servitization and Business Model Innovation in BtoB Manufacturing Firms. Ind. Mark. Manag. 2020, 89, 245–264. [Google Scholar] [CrossRef]
- Kohli, R.; Grover, V.; College of William and Mary, USA; Clemson University. USA Business Value of IT: An Essay on Expanding Research Directions to Keep up with the Times. JAIS 2008, 9, 23–39. [Google Scholar] [CrossRef]
- Nicolescu, R.; Huth, M.; Radanliev, P.; De Roure, D. Mapping the Values of IoT. J. Inf. Technol. 2018, 33, 345–360. [Google Scholar] [CrossRef]
- Yi, S.; Li, C.; Li, Q. A Survey of Fog Computing: Concepts, Applications and Issues. In Proceedings of the 2015 Workshop on Mobile Big Data, Hangzhou China, 21 June 2015; ACM: New York, NY, USA, 2015; pp. 37–42. [Google Scholar]
- Chiang, M.; Zhang, T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2016, 3, 854–864. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 416–464. [Google Scholar] [CrossRef]
- Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge Computing: A Survey. Future Gener. Comput. Syst. 2019, 97, 219–235. [Google Scholar] [CrossRef]
- Naha, R.K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P.P.; Gao, L.; Xiang, Y.; Ranjan, R. Fog Computing: Survey of Trends, Architectures, Requirements, and Research Directions. IEEE Access 2018, 6, 47980–48009. [Google Scholar] [CrossRef]
- Omoniwa, B.; Hussain, R.; Javed, M.A.; Bouk, S.H.; Malik, S.A. Fog/Edge Computing-Based IoT (FECIoT): Architecture, Applications, and Research Issues. IEEE Internet Things J. 2019, 6, 4118–4149. [Google Scholar] [CrossRef]
- Mahmud, R.; Kotagiri, R.; Buyya, R. Fog Computing: A Taxonomy, Survey and Future Directions. In Internet of Everything; Di Martino, B., Li, K.-C., Yang, L.T., Esposito, A., Eds.; Internet of Things; Springer: Singapore, 2018; pp. 103–130. ISBN 978-981-10-5860-8. [Google Scholar]
- Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE Access 2018, 6, 6900–6919. [Google Scholar] [CrossRef]
- Mukherjee, M.; Shu, L.; Wang, D. Survey of fog Computing: Fundamental, network applications, and research challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1826–1831. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, K.; Lin, X.; Shen, X. Securing Fog Computing for Internet of Things Applications: Challenges and Solutions. IEEE Commun. Surv. Tutor. 2018, 20, 601–628. [Google Scholar] [CrossRef]
- Hu, P.; Dhelim, S.; Ning, H.; Qiu, T. Survey on Fog Computing: Architecture, Key Technologies, Applications and Open Issues. J. Netw. Comput. Appl. 2017, 98, 27–42. [Google Scholar] [CrossRef]
- Baktir, A.C.; Ozgovde, A.; Ersoy, C. How Can Edge Computing Benefit from Software-Defined Networking: A Survey, Use Cases, and Future Directions. IEEE Commun. Surv. Tutor. 2017, 19, 2359–2391. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A Survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Berman, S.J.; Kesterson-Townes, L. Connecting with the Digital Customer of the Future. Strategy Leadersh. 2012, 40, 29–35. [Google Scholar] [CrossRef]
- Velasquez, K.; Abreu, D.P.; Assis, M.R.M.; Senna, C.; Aranha, D.F.; Bittencourt, L.F.; Laranjeiro, N.; Curado, M.; Vieira, M.; Monteiro, E.; et al. Fog Orchestration for the Internet of Everything: State-of-the-Art and Research Challenges. J. Internet Serv. Appl. 2018, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Haller, S.; Karnouskos, S.; Schroth, C. The Internet of Things in an Enterprise Context. In Future Internet—FIS 2008; Domingue, J., Fensel, D., Traverso, P., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5468, pp. 14–28. ISBN 978-3-642-00984-6. [Google Scholar]
- Rosati, P.; Lynn, T. Mapping the Business Value of the Internet of Things. In The Cloud-to-Thing; Palgrave Studies in Digital Business & Enabling Technologies; Springer International Publishing: Cham, Switzerland, 2020; pp. 141–157. ISBN 978-3-030-41109-1. [Google Scholar]
- Mejtoft, T. Internet of Things and Co-Creation of Value. In Proceedings of the 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Dalian, China, 19–22 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 672–677. [Google Scholar]
- Whitmore, A.; Agarwal, A.; Da Xu, L. The Internet of Things—A Survey of Topics and Trends. Inf. Syst. Front. 2015, 17, 261–274. [Google Scholar] [CrossRef]
- Räikkönen, M.; Saari, L.; Valkokari, K.; Rantala, A.; Kortelainen, H. Creating Value and Business Benefits from Joint Offerings of Asset Performance Management Tools in the Capital-Intensive Industries. In 15th WCEAM Proceedings; Pinto, J.O.P., Kimpara, M.L.M., Reis, R.R., Seecharan, T., Upadhyaya, B.R., Amadi-Echendu, J., Eds.; Lecture Notes in Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 126–136. ISBN 978-3-030-96793-2. [Google Scholar]
- Grönroos, C.; Voima, P. Critical Service Logic: Making Sense of Value Creation and Co-Creation. J. Acad. Mark. Sci. 2013, 41, 133–150. [Google Scholar] [CrossRef]
- Bowman, C.; Ambrosini, V. Firm Value Creation and Levels of Strategy. Manag. Decis. 2007, 45, 360–371. [Google Scholar] [CrossRef]
- Khan, A.; Pohl, M.; Bosse, S.; Hart, S.W.; Turowski, K. A Holistic View of the IoT Process from Sensors to the Business Value. In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security, Porto, Portugal, 24–26 April 2017; SCITEPRESS—Science and Technology Publications: Porto, Portugal, 2017; pp. 392–399. [Google Scholar]
- Rajnoha, R.; Hadac, J. Strategic Key Elements in Big Data Analytics as Driving Forces of IoT Manufacturing Value Creation: A Challenge for Research Framework. IEEE Trans. Eng. Manag. 2022, 1–16. [Google Scholar] [CrossRef]
- Brous, P.; Janssen, M.; Herder, P. The Dual Effects of the Internet of Things (IoT): A Systematic Review of the Benefits and Risks of IoT Adoption by Organizations. Int. J. Inf. Manag. 2020, 51, 101952. [Google Scholar] [CrossRef]
- Hamm, A.; Willner, A.; Schieferdecker, I. Edge Computing: A comprehensive survey of current initiatives and a roadmap for a sustainable edge Computing development. In Proceedings of the 15th International Conference on Business Information Systems 2020 “Developments, Opportunities and Challenges of Digitization”, WIRTSCHAFTSINFORMATIK, Potsdam, Germany, 9–11 March 2020. [Google Scholar]
- Ai, Y.; Peng, M.; Zhang, K. Edge Computing Technologies for Internet of Things: A Primer. Digit. Commun. Netw. 2018, 4, 77–86. [Google Scholar] [CrossRef]
- Kagermann, H. Change through Digitization—Value Creation in the Age of Industry 4.0. In Management of Permanent Change; Albach, H., Meffert, H., Pinkwart, A., Reichwald, R., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2015; pp. 23–45. ISBN 978-3-658-05013-9. [Google Scholar]
- Watson, R.T.; Webster, J. Analysing the Past to Prepare for the Future: Writing a Literature Review a Roadmap for Release 2.0. J. Decis. Syst. 2020, 29, 129–147. [Google Scholar] [CrossRef]
- Aazam, M.; Huh, E.-N. Fog Computing: The Cloud-IoT\/IoE Middleware Paradigm. IEEE Potentials 2016, 35, 40–44. [Google Scholar] [CrossRef]
- Neagu, G.; Preda, S.; Stanciu, A.; Florian, V. A Cloud-IoT Based Sensing Service for Health Monitoring. In Proceedings of the 2017 E-Health and Bioengineering Conference (EHB), Sinaia, Romania, 22–24 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 53–56. [Google Scholar]
- Ismail, L.; Materwala, H. Energy-Aware VM Placement and Task Scheduling in Cloud-IoT Computing: Classification and Performance Evaluation. IEEE Internet Things J. 2018, 5, 5166–5176. [Google Scholar] [CrossRef]
- Beloglazov, A.; Abawajy, J.; Buyya, R. Energy-Aware Resource Allocation Heuristics for Efficient Management of Data Centers for Cloud Computing. Future Gener. Comput. Syst. 2012, 28, 755–768. [Google Scholar] [CrossRef] [Green Version]
- Morabito, R. Inspecting the Performance of Low-Power Nodes during the Execution of Edge Computing Tasks. In Proceedings of the 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 148–153. [Google Scholar]
- Maduako, I.; Cao, H.; Hernandez, L.; Wachowicz, M. Combining Edge and Cloud Computing for Mobility Analytics: Poster Abstract. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA, 12 October 2017; ACM: New York, NY, USA, 2017; pp. 1–3. [Google Scholar]
- Goscinski, A.M.; Tari, Z.; Aziz, I.A.; Alzahrani, E.J. Fog Computing as a Critical Link Between a Central Cloud and IoT in Support of Fast Discovery of New Hydrocarbon Reservoirs. In Mobile Networks and Management; Hu, J., Khalil, I., Tari, Z., Wen, S., Eds.; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2018; Volume 235, pp. 247–261. ISBN 978-3-319-90774-1. [Google Scholar]
- Chiang, M.; Ha, S.; Risso, F.; Zhang, T.; Chih-Lin, I. Clarifying Fog Computing and Networking: 10 Questions and Answers. IEEE Commun. Mag. 2017, 55, 18–20. [Google Scholar] [CrossRef]
- Pan, Y.; Thulasiraman, P.; Wang, Y. Overview of Cloudlet, Fog Computing, Edge Computing, and Dew Computing. In Proceedings of the 3rd International Workshop on Dew Computing, Toronto, ON, Canada, 29–30 October 2018; pp. 20–23. [Google Scholar]
- Satyanarayanan, M. The Emergence of Edge Computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Yi, S.; Hao, Z.; Qin, Z.; Li, Q. Fog Computing: Platform and Applications. In Proceedings of the 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), Washington, DC, USA, 12–13 November 2015; IEEE: Piscataway, NJ, USA; pp. 73–78. [Google Scholar]
- Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. Fog Computing: A Platform for Internet of Things and Analytics. In Big Data and Internet of Things: A Roadmap for Smart Environments; Bessis, N., Dobre, C., Eds.; Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2014; Volume 546, pp. 169–186. ISBN 978-3-319-05028-7. [Google Scholar]
- Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. [Google Scholar] [CrossRef]
- Costa, B.; Bachiega, J.; de Carvalho, L.R.; Araujo, A.P.F. Orchestration in Fog Computing: A Comprehensive Survey. ACM Comput. Surv. 2022, 55, 1–34. [Google Scholar] [CrossRef]
- Pan, J.; McElhannon, J. Future Edge Cloud and Edge Computing for Internet of Things Applications. IEEE Internet Things J. 2018, 5, 439–449. [Google Scholar] [CrossRef]
- Nour, B.; Mastorakis, S.; Mtibaa, A. Compute-Less Networking: Perspectives, Challenges, and Opportunities. IEEE Netw. 2020, 34, 259–265. [Google Scholar] [CrossRef]
- Senyo, P.K.; Addae, E.; Boateng, R. Cloud Computing Research: A Review of Research Themes, Frameworks, Methods and Future Research Directions. Int. J. Inf. Manag. 2018, 38, 128–139. [Google Scholar] [CrossRef]
- Cavalcante, E.; Pereira, J.; Alves, M.P.; Maia, P.; Moura, R.; Batista, T.; Delicato, F.C.; Pires, P.F. On the Interplay of Internet of Things and Cloud Computing: A Systematic Mapping Study. Comput. Commun. 2016, 89–90, 17–33. [Google Scholar] [CrossRef]
- Botta, A.; de Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud Computing and Internet of Things: A Survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [Google Scholar] [CrossRef]
- Almolhis, N.; Alashjaee, A.M.; Duraibi, S.; Alqahtani, F.; Moussa, A.N. The Security Issues in IoT—Cloud: A Review. In Proceedings of the 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), Langkawi, Malaysia, 28–29 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 191–196. [Google Scholar]
- Hurbungs, V.; Bassoo, V.; Fowdur, T.P. Fog and Edge Computing: Concepts, Tools and Focus Areas. Int. J. Inf. Technol. 2021, 13, 511–522. [Google Scholar] [CrossRef]
- Varghese, B.; Wang, N.; Barbhuiya, S.; Kilpatrick, P.; Nikolopoulos, D.S. Challenges and Opportunities in Edge Computing. In Proceedings of the International Conference on Smart Cloud, New York, NY, USA, 18–20 November 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Hao, Z.; Novak, E.; Yi, S.; Li, Q. Challenges and Software Architecture for Fog Computing. IEEE Internet Comput. 2017, 21, 44–53. [Google Scholar] [CrossRef]
- Du, J.; Zhao, L.; Feng, J.; Chu, X. Computation Offloading and Resource Allocation in Mixed Fog/Cloud Computing Systems with Min-Max Fairness Guarantee. IEEE Trans. Commun. 2018, 66, 1594–1608. [Google Scholar] [CrossRef]
- Yangui, S.; Ravindran, P.; Bibani, O.; Glitho, R.H.; Ben Hadj-Alouane, N.; Morrow, M.J.; Polakos, P.A. A Platform as-a-Service for Hybrid Cloud/Fog Environments. In Proceedings of the 2016 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), Rome, Italy, 13–15 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–7. [Google Scholar]
- Harth, N.; Delakouridis, K.; Anagnostopoulos, C. Convey Intelligence to Edge Aggregation Analytics. In New Advances in the Internet of Things; Yager, R.R., Pascual Espada, J., Eds.; Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2018; Volume 715, pp. 25–44. ISBN 978-3-319-58189-7. [Google Scholar]
- Ferdowsi, A.; Challita, U.; Saad, W. Deep Learning for Reliable Mobile Edge Analytics in Intelligent Transportation Systems: An Overview. IEEE Veh. Technol. Mag. 2019, 14, 62–70. [Google Scholar] [CrossRef]
- Roman, R.; Lopez, J.; Mambo, M. Mobile Edge Computing, Fog et al.: A Survey and Analysis of Security Threats and Challenges. Future Gener. Comput. Syst. 2018, 78, 680–698. [Google Scholar] [CrossRef]
- Dsouza, C.; Ahn, G.-J.; Taguinod, M. Policy-Driven Security Management for Fog Computing: Preliminary Framework and a Case Study. In Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014), Redwood City, CA, USA, 13–15 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 16–23. [Google Scholar]
- Ibrahim, M.H. Octopus: An Edge-Fog Mutual Authentication Scheme. Int. J. Netw. Secur. 2016, 18, 1089–1101. [Google Scholar]
- Rejiba, Z.; Masip-Bruin, X.; Marin-Tordera, E. Towards a Context-Aware Wi-Fi-Based Fog Node Discovery Scheme Using Cellular Footprints. In Proceedings of the 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Limassol, Cyprus, 15–17 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Venanzi, R.; Kantarci, B.; Foschini, L.; Bellavista, P. MQTT-Driven Sustainable Node Discovery for Internet of Things-Fog Environments. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Dautov, R.; Distefano, S.; Bruneo, D.; Longo, F.; Merlino, G.; Puliafito, A. Data Processing in Cyber-Physical-Social Systems through Edge Computing. IEEE Access 2018, 6, 29822–29835. [Google Scholar] [CrossRef]
- Brogi, A.; Forti, S. QoS-Aware Deployment of IoT Applications through the Fog. IEEE Internet Things J. 2017, 4, 1185–1192. [Google Scholar] [CrossRef]
- Skarlat, O.; Nardelli, M.; Schulte, S.; Dustdar, S. Towards QoS-Aware Fog Service Placement. In Proceedings of the 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 89–96. [Google Scholar]
- Yousefpour, A.; Patil, A.; Ishigaki, G.; Kim, I.; Wang, X.; Cankaya, H.C.; Zhang, Q.; Xie, W.; Jue, J.P. FOGPLAN: A Lightweight QoS-Aware Dynamic Fog Service Provisioning Framework. IEEE Internet Things J. 2019, 6, 5080–5096. [Google Scholar] [CrossRef]
- Toczé, K.; Nadjm-Tehrani, S. A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing. Wirel. Commun. Mob. Comput. 2018, 2018, 7476201. [Google Scholar] [CrossRef]
- Negash, B.; Rahmani, A.M.; Liljeberg, P.; Jantsch, A. Fog Computing fundamentals in the Internet-of-Things. In Fog Computing in the Internet of Things; Springer: Cham, Switzerland, 2018; pp. 3–13. [Google Scholar]
- Bittencourt, L.; Immich, R.; Sakellariou, R.; Fonseca, N.; Madeira, E.; Curado, M.; Villas, L.; DaSilva, L.; Lee, C.; Rana, O. The Internet of Things, Fog and Cloud Continuum: Integration and Challenges. Internet Things 2018, 3–4, 134–155. [Google Scholar] [CrossRef]
- Marjani, M.; Nasaruddin, F.; Abdullah, G.; Karim, A.; Hashem, I.; Siddiqa, A.; Yaqoob, I. Big IoT data analytics: Architecture, opportunities, and open research challenges. IEEE Access 2017, 5, 5247–5261. [Google Scholar]
- Díaz-de-Arcaya, J.; Miñon, R.; Torre-Bastida, A.I. Towards an Architecture for Big Data Analytics Leveraging Edge/Fog Paradigms. In Proceedings of the 13th European Conference on Software Architecture—ECSA, Paris, France, 9–13 September 2019; ACM Press: New York, NY, USA, 2019; Volume 2, pp. 173–176. [Google Scholar]
- Bilal, K.; Khalid, O.; Erbad, A.; Khan, S.U. Potentials, Trends, and Prospects in Edge Technologies: Fog, Cloudlet, Mobile Edge, and Micro Data Centers. Comput. Netw. 2018, 130, 94–120. [Google Scholar] [CrossRef] [Green Version]
- Ali, O.; Ishak, M.K.; Bhatti, M.K.L.; Khan, I.; Kim, K.-I. A Comprehensive Review of Internet of Things: Technology Stack, Middlewares, and Fog/Edge Computing Interface. Sensors 2022, 22, 995. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cook, D.J.; Crandall, A.S. The User Side of Sustainability: Modeling Behavior and Energy Usage in the Home. Pervasive Mob. Comput. 2013, 9, 161–175. [Google Scholar] [CrossRef]
- De Carvalho, L.R.; Patricia Favacho de Araujo, A. Performance Comparison of Terraform and Cloudify as Multicloud Orchestrators. In Proceedings of the 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia, 11–14 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 380–389. [Google Scholar]
- Rosa, M.J.F.; Araujo, A.P.F.; Mendes, F.L.S. Cost and Time Prediction for Efficient Execution of Bioinformatics Workflows in Federated Cloud. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1703–1710. [Google Scholar]
- Faragardi, H.R.; Vahabi, M.; Fotouhi, H.; Nolte, T.; Fahringer, T. An Efficient Placement of Sinks and SDN Controller Nodes for Optimizing the Design Cost of Industrial IoT Systems: Sink-Controller Placement in Industrial IoT Systems. Softw. Pract. Exper. 2018, 48, 1893–1919. [Google Scholar] [CrossRef]
- Rullo, A.; Serra, E.; Bertino, E.; Lobo, J. Optimal Placement of Security Resources for the Internet of Things. In The Internet of Things for Smart Urban Ecosystems; Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A., Eds.; Internet of Things; Springer International Publishing: Cham, Switzerland, 2019; pp. 95–124. ISBN 978-3-319-96549-9. [Google Scholar]
- Kumar, S.; Chaurasiya, V.K. A Strategy for Elimination of Data Redundancy in Internet of Things (IoT) Based Wireless Sensor Network (WSN). IEEE Syst. J. 2019, 13, 1650–1657. [Google Scholar] [CrossRef]
- Asensio, A.; Masip-Bruin, X.; Durán, R.J.; de Miguel, I.; Ren, G.; Daijavad, S.; Jukan, A. Designing an Efficient Clustering Strategy for Combined Fog-to-Cloud Scenarios. Future Gener. Comput. Syst. 2020, 109, 392–406. [Google Scholar] [CrossRef]
- Columbus, L. 2018 roundup of Internet of things forecasts and market estimates. Forbes 2018. Available online: https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018-roundup-of-internet-of-things-forecasts-and-market-estimates/ (accessed on 18 April 2022).
- Newman, P. IoT report: How Internet of things technology growth is reaching mainstream companies and consumers. Business Insider 2019, 28. Available online: https://www.businessinsider.in/tech/news/iot-report-how-internet-of-things-technology-growth-is-reaching-mainstream-companies-and-consumers/articleshow/73133090.cms (accessed on 19 April 2022).
- Shah, D.R.; Dhawan, D.A.; Thoday, V. An Overview on Security Challenges in Cloud, Fog, and Edge Computing. In Data Science and Security; Shukla, S., Gao, X.-Z., Kureethara, J.V., Mishra, D., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2022; Volume 462, pp. 337–345. ISBN 978-981-19221-0-7. [Google Scholar]
- Shim, J.P.; Sharda, R.; French, A.M.; Syler, R.A.; Patten, K.P. The Internet of Things: Multi-Faceted Research Perspectives. CAIS 2020, 46, 511–536. [Google Scholar] [CrossRef]
- Cheng, B.; Kovacs, E.; Kitazawa, A.; Terasawa, K.; Hada, T.; Takeuchi, M. FogFlow: Orchestrating IoT services over cloud and edges. NEC Tech. J. 2018, 13, 48–53. [Google Scholar]
- Zanzi, L.; Giust, F.; Sciancalepore, V. M2EC: A Multi-Tenant Resource Orchestration in Multi-Access Edge Computing Systems. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Avasalcai, C.; Dustdar, S. Latency-Aware Decentralized Resource Management for IoT Applications. In Proceedings of the 8th International Conference on the Internet of Things, Santa Barbara, CA, USA, 15 October 2018; ACM: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Daoud, W.B.; Obaidat, M.S.; Meddeb-Makhlouf, A.; Zarai, F.; Hsiao, K.-F. TACRM: Trust Access Control and Resource Management Mechanism in Fog Computing. Hum. Centric Comput. Inf. Sci. 2019, 9, 28. [Google Scholar] [CrossRef]
- Donassolo, B.; Fajjari, I.; Legrand, A.; Mertikopoulos, P. Fog Based Framework for IoT Service Provisioning. In Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Gedeon, J.; Zengerle, S.; Alles, S.; Brandherm, F.; Muhlhauser, M. Sunstone: Navigating the Way through the Fog. In Proceedings of the 2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC), Melbourne, Australia, 11–14 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 49–58. [Google Scholar]
- Salem, A.; Nadeem, T. LAMEN: Towards Orchestrating the Growing Intelligence on the Edge. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 508–513. [Google Scholar]
- Wang, N.; Varghese, B.; Matthaiou, M.; Nikolopoulos, D.S. ENORM: A Framework For Edge NOde Resource Management. IEEE Trans. Serv. Comput. 2017, 13, 1086–1099. [Google Scholar] [CrossRef]
- Majeed, A.A.; Kilpatrick, P.; Spence, I.; Varghese, B. Modelling Fog Offloading Performance. In Proceedings of the 2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC), Melbourne, Australia, 11–14 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 29–38. [Google Scholar]
- Javaid, S.; Javaid, N.; Saba, T.; Wadud, Z.; Rehman, A.; Haseeb, A. Intelligent Resource Allocation in Residential Buildings Using Consumer to Fog to Cloud Based Framework. Energies 2019, 12, 815. [Google Scholar] [CrossRef]
- Jalali, F.; Lynar, T.; Smith, O.J.; Kolluri, R.R.; Hardgrove, C.V.; Waywood, N.; Suits, F. Dynamic Edge Fabric EnvironmenT: Seamless and Automatic Switching among Resources at the Edge of IoT Network and Cloud. In Proceedings of the 2019 IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 77–86. [Google Scholar]
- Nath, S.B.; Chattopadhyay, S.; Karmakar, R.; Addya, S.K.; Chakraborty, S.; Ghosh, S.K. PTC: Pick-Test-Choose to Place Containerized Micro-Services in IoT. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Östberg, P.-O.; Byrne, J.; Casari, P.; Eardley, P.; Anta, A.F.; Forsman, J.; Kennedy, J.; Le Duc, T.; Marino, M.N.; Loomba, R.; et al. Reliable Capacity Provisioning for Distributed Cloud/Edge/Fog Computing Applications. In Proceedings of the 2017 European Conference on Networks and Communications (EuCNC), Oulu, Finland, 12–15 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Wamser, F.; Lombardo, C.; Vassilakis, C.; Dinh-Xuan, L.; Lago, P.; Bruschi, R.; Tran-Gia, P. Orchestration and Monitoring in Fog Computing for Personal Edge Cloud Service Support. In Proceedings of the 2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), Washington, DC, USA, 25–27 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 91–96. [Google Scholar]
- Yigitoglu, E.; Liu, L.; Looper, M.; Pu, C. Distributed Orchestration in Large-Scale IoT Systems. In Proceedings of the 2017 IEEE International Congress on Internet of Things (ICIOT), Honolulu, HI, USA, 25–30 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 58–65. [Google Scholar]
- Viswanathan, H.; Pandey, P.; Pompili, D. Maestro: Orchestrating Concurrent Application Workflows in Mobile Device Clouds. In Proceedings of the 2016 IEEE International Conference on Autonomic Computing (ICAC), Wuerzburg, Germany, 17–22 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 257–262. [Google Scholar]
- Cozzolino, V.; Ott, J.; Ding, A.Y.; Mortier, R. ECCO: Edge-Cloud Chaining and Orchestration Framework for Road Context Assessment. In Proceedings of the 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI), Sydney, Australia, 21–24 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 223–230. [Google Scholar]
- Gogouvitis, S.V.; Mueller, H.; Premnadh, S.; Seitz, A.; Bruegge, B. Seamless Computing in Industrial Systems Using Container Orchestration. Future Gener. Comput. Syst. 2020, 109, 678–688. [Google Scholar] [CrossRef]
- Etemadi, M.; Ghobaei-Arani, M.; Shahidinejad, A. A Cost-Efficient Auto-Scaling Mechanism for IoT Applications in Fog Computing Environment: A Deep Learning-Based Approach. Clust. Comput. 2021, 24, 3277–3292. [Google Scholar] [CrossRef]
- Pradhan, S.; Dubey, A.; Khare, S.; Nannapaneni, S.; Gokhale, A.; Mahadevan, S.; Schmidt, D.C.; Lehofer, M. CHARIOT: Goal-Driven Orchestration Middleware for Resilient IoT Systems. ACM Trans. Cyber Phys. Syst. 2018, 2, 1–37. [Google Scholar] [CrossRef]
- Pahl, C.; Ioini, N.E.; Helmer, S.; Lee, B. An Architecture Pattern for Trusted Orchestration in IoT Edge Clouds. In Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; pp. 63–70. [Google Scholar]
- Van Lingen, F.; Yannuzzi, M.; Jain, A.; Irons-Mclean, R.; Lluch, O.; Carrera, D.; Perez, J.L.; Gutierrez, A.; Montero, D.; Marti, J.; et al. The Unavoidable Convergence of NFV, 5G, and Fog: A Model-Driven Approach to Bridge Cloud and Edge. IEEE Commun. Mag. 2017, 55, 28–35. [Google Scholar] [CrossRef]
- Takefuji, Y. Connected Vehicle Security Vulnerabilities [Commentary]. IEEE Technol. Soc. Mag. 2018, 37, 15–18. [Google Scholar] [CrossRef]
- Hossain, M.M.; Fotouhi, M.; Hasan, R. Towards an Analysis of Security Issues, Challenges, and Open Problems in the Internet of Things. In Proceedings of the 2015 IEEE World Congress on Services, New York, NY, USA, 27 June–2 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 21–28. [Google Scholar]
- Suárez-Albela, M.; Fernández-Caramés, T.; Fraga-Lamas, P.; Castedo, L. A Practical Evaluation of a High-Security Energy-Efficient Gateway for IoT Fog Computing Applications. Sensors 2017, 17, 1978. [Google Scholar] [CrossRef]
- Martin, J.P.; Kandasamy, A.; Chandrasekaran, K.; Joseph, C.T. Elucidating the Challenges for the Praxis of Fog Computing: An Aspect-Based Study. Int. J. Commun. Syst. 2019, 32, e3926. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, R.; Garraghan, P.; Lin, T.; Xu, J.; Rovatsos, M. Fog orchestration for Internet of Things services. IEEE Internet Comput. 2017, 21, 16–24. [Google Scholar] [CrossRef]
- Aazam, M.; Zeadally, S.; Harras, K.A. Offloading in Fog Computing for IoT: Review, Enabling Technologies, and Research Opportunities. Future Gener. Comput. Syst. 2018, 87, 278–289. [Google Scholar] [CrossRef]
- Agarwal, Y.; Dey, A.K. Toward Building a Safe, Secure, and Easy-to-Use Internet of Things Infrastructure. Computer 2016, 49, 88–91. [Google Scholar] [CrossRef]
- Wolf, V.; Stumpf-Wollersheim, J.; Schott, L. The Internet of Things in a Business Context: Implications with Respect to Value Creation, Value Drivers, and Value Capturing. In Digital Entrepreneurship; Baierl, R., Behrens, J., Brem, A., Eds.; FGF Studies in Small Business and Entrepreneurship; Springer International Publishing: Cham, Switzerland, 2019; pp. 185–197. ISBN 978-3-030-20137-1. [Google Scholar]
- Osterwalder, A.; Pigneur, Y.; Tucci, C.L. Clarifying Business Models: Origins, Present, and Future of the Concept. CAIS 2005, 16, 1. [Google Scholar] [CrossRef] [Green Version]
- Zott, C.; Amit, R.; Massa, L. The Business Model: Recent Developments and Future Research. J. Manag. 2011, 37, 1019–1042. [Google Scholar]
- Kindström, D. Towards a Service-Based Business Model—Key Aspects for Future Competitive Advantage. Eur. Manag. J. 2010, 28, 479–490. [Google Scholar] [CrossRef]
- Agostini, L.; Nosella, A. Industry 4.0 and Business Models: A Bibliometric Literature Review. BPMJ 2021, 27, 1633–1655. [Google Scholar] [CrossRef]
- Hagen, S.; Thomas, O. Expectations vs. Reality—Benefits of Smart Services in the Field of Tension between Industry and Science. In Proceedings of the 14th International Conference on Wirtschaftsinformatik, Siegen, Germany, 24–27 February 2019; pp. 647–660. [Google Scholar]
- Van der Vegte, W.F. Taking Advantage of Data Generated by Products: Trends, Opportunities and Challenges. In Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016; Volume 36. [Google Scholar]
- Siggelkow, N.; Terwiesch, C. The Age of Continuous Connection. Harv. Bus. Rev. 2019, 97, 64–73. [Google Scholar]
- Beverungen, D.; Müller, O.; Matzner, M.; Mendling, J.; vom Brocke, J. Conceptualizing Smart Service Systems. Electron. Mark. 2019, 29, 7–18. [Google Scholar] [CrossRef]
- Gimpel, G. Bringing Dark Data into the Light: Illuminating Existing IoT Data Lost within Your Organization. Bus. Horiz. 2020, 63, 519–530. [Google Scholar] [CrossRef]
- Bucherer, E.; Uckelmann, D. Business Models for the Internet of Things. In Architecting the Internet of Things; Springer: Berlin/Heidelberg, Germany, 2011; pp. 253–277. [Google Scholar]
- Santoro, G.; Vrontis, D.; Thrassou, A.; Dezi, L. The Internet of Things: Building a Knowledge Management System for Open Innovation and Knowledge Management Capacity. Technol. Forecast. Soc. Chang. 2018, 136, 347–354. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic Capabilities and Strategic Management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Pavlou, P.A.; El Sawy, O.A. The “Third Hand”: IT-Enabled Competitive Advantage in Turbulence through Improvisational Capabilities. Inf. Syst. Res. 2010, 21, 443–471. [Google Scholar] [CrossRef]
Authors | Year | Title | Methodology | Findings |
---|---|---|---|---|
Rajnoha & Hadac [44] | 2021 | Strategic Key Elements in Big Data Analytics as Driving Forces of IoT Manufacturing Value Creation, A Challenge for Research Framework | 2 Databases 187 Articles | Uncovers relations between BDA and IoT key components and identifies a research gap in terms of Industry 4.0 in the context of value creation within IoT intelligent manufacturing. It provides a comprehensive and holistic research with the sole goal of presenting a more detailed and systematic view on the situation and potential future trends in this issue. |
Brous & Janssen, Herder [45] | 2020 | The Dual Effects of the Internet of Things (IoT): A Systematic Review of the Benefits and Risks of IoT Adoption by Organizations | 4 Databases Webster and Watson 102 Articles | The findings lend credence to the dual hypothesis that utilizing IoT for asset management causes unexpected societal shifts that lead to the restructuring of an organization’s structural makeup. The IoT has the potential to offer numerous benefits to businesses once unforeseen risks have been mitigated and the necessary organizational adjustments have been implemented. Modifications need to be made to the organization’s systems, practices, and processes need to be modified in order for the Internet of Things to serve the organization’s goals and for the organization to be able to build its capabilities around them. |
Hamm, Willner & Schieferdecker [46] | 2020 | Edge Computing: A Comprehensive Survey of Current Initiatives and a Roadmap for a Sustainable Edge Computing Development | Open Online search and Snowball sampling 75 Articles | Important branches are currently the telecom and industrial sectors, and the most addressed topic is the network virtualization layer. The majority of the initiatives are software development projects that are internationally coordinated and organized. The roadmap reveals a large number of opportunities and risks associated with edge computing in relation to sustainable development. These include the utilization of renewable energy sources; biases; new business models; an increase or decrease in energy consumption; responsiveness; monitoring; and traceability. |
Mouradian et al. [23] | 2018 | A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges | Open Online search 75 Articles | Indeed, fog systems make it possible to experience lower latencies. The local processing that is made available by fog nodes helps save bandwidth and enables faster processing by slowing down or avoiding the turnaround with the cloud stratum altogether. It has been demonstrated that fog systems are very energy efficient. Lessons learned from an architectural perspective (semantic web technology, the absence of appropriate monitoring mechanisms, etc.), as well as the challenges faced by algorithm designers (alg. for decisions on design, managing QoS, need for large scale realistic scenarios, etc.). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perifanis, N.-A.; Kitsios, F. Edge and Fog Computing Business Value Streams through IoT Solutions: A Literature Review for Strategic Implementation. Information 2022, 13, 427. https://doi.org/10.3390/info13090427
Perifanis N-A, Kitsios F. Edge and Fog Computing Business Value Streams through IoT Solutions: A Literature Review for Strategic Implementation. Information. 2022; 13(9):427. https://doi.org/10.3390/info13090427
Chicago/Turabian StylePerifanis, Nikolaos-Alexandros, and Fotis Kitsios. 2022. "Edge and Fog Computing Business Value Streams through IoT Solutions: A Literature Review for Strategic Implementation" Information 13, no. 9: 427. https://doi.org/10.3390/info13090427
APA StylePerifanis, N. -A., & Kitsios, F. (2022). Edge and Fog Computing Business Value Streams through IoT Solutions: A Literature Review for Strategic Implementation. Information, 13(9), 427. https://doi.org/10.3390/info13090427