Sustainable Mobility as a Service: Demand Analysis and Case Studies
Abstract
:1. Introduction
2. Literature Review about Demand of MaaS
3. Travel Demand Analysis and Modelling
3.1. Transport System Models (TSMs)
3.2. Travel Demand Models
- Probability of choosing the set of alternatives I: p(I);
- Probability of choosing the alternative j, given the set of alternatives I: p(j|I);
3.3. Surveys
3.3.1. Sample Surveys
3.3.2. Aggregated Surveys
3.4. ICT Tools
4. Case Studies
4.1. London (UK)
4.2. Sydney (Australia)
4.3. Strait of Messina (Italy)
4.4. Discussion
- (1)
- The majority of potential MaaS travelers think that public transport should be the backbone of MaaS; generally, travelers prefer MaaS bundles with public transport options, rather than bundles including bike sharing, car sharing and taxi options.
- (2)
- The propensity to adopt MaaS scheme increases was recorded for multi-modal and multi-service trips rather that trips undertaken with a single mode-services (e.g., inter-city trips in the Strait of Messina).
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Transport for NSW. Future Transport Technology, Roadmap 2016. Technical Report; 2016. Available online: https://future.transport.nsw.gov.au/sites/default/files/media/documents/2018/Future-Transport-Technology-Overview-Roadmap-2016.pdf (accessed on 12 April 2022).
- Veugelers, R. (Ed.) Manufacturing Europe’s Future; Bruegel Blueprint; Bruegel: Brussels, Belgium, 2013; ISBN 978-90-78910-32-9. [Google Scholar]
- Comi, A.; Rossolov, A.; Polimeni, A.; Nuzzolo, A. Private Car O-D Flow Estimation Based on Automated Vehicle Monitoring Data: Theoretical Issues and Empirical Evidence. Information 2021, 12, 493. [Google Scholar] [CrossRef]
- Nuzzolo, A.; Comi, A. Dynamic Optimal Travel Strategies in Intelligent Stochastic Transit Networks. Information 2021, 12, 281. [Google Scholar] [CrossRef]
- Musolino, G.; Rindone, C.; Vitetta, A. Models for Supporting Mobility as a Service (MaaS) Design. Smart Cities 2022, 5, 206–222. [Google Scholar] [CrossRef]
- Hensher, D.A. Understanding Mobility as a Service (MaaS): Past, Present and Future; Elsevier: Amsterdam, The Netherlands; Cambridge, MA, USA, 2020; ISBN 978-0-12-820044-5. [Google Scholar]
- Sulskyte, D. Mobility-As-A-Service: Concepts and Theoretical Approach. In Proceedings of the 2021 IEEE International Conference on Technology and Entrepreneurship (ICTE), Kaunas, Lithuania, 24 August 2021; pp. 1–6. [Google Scholar]
- Smith, G.; Hensher, D.A. Towards a Framework for Mobility-as-a-Service Policies. Transp. Policy 2020, 89, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Ben-Akiva, M.E.; Lerman, S.R. Discrete Choice Analysis: Theory and Application to Travel Demand; MIT Press Series in Transportation Studies; MIT Press: Cambridge, MA, USA, 1985; ISBN 978-0-262-02217-0. [Google Scholar]
- de Dios Ortúzar, J.; Willumsen, L.G. Modelling Transport, 3rd ed.; John Wiley: Chichester, NY, USA, 2001; ISBN 978-0-471-86110-2. [Google Scholar]
- Cascetta, E. Transportation Systems Engineering: Theory and Methods; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-1-4757-6873-2. [Google Scholar]
- Chamier Gliszczyński, N. Sustainable Operation of a Transport System in Cities. KEM 2011, 486, 175–178. [Google Scholar] [CrossRef]
- Karoń, G. Travel Demand and Transportation Supply Modelling for Agglomeration without Transportation Model. In Activities of Transport Telematics; Communications in Computer and Information Science; Mikulski, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 395, pp. 284–293. ISBN 978-3-642-41646-0. [Google Scholar]
- Matyas, M.; Kamargianni, M. The Potential of Mobility as a Service Bundles as a Mobility Management Tool. Transportation 2019, 46, 1951–1968. [Google Scholar] [CrossRef] [Green Version]
- Vitetta, A. Sustainable Mobility as a Service: Framework and Transport System Models. Information 2022, 13, 346. [Google Scholar] [CrossRef]
- Russo, F. Sustainable Mobility as a Service: Dynamic Models for Agenda 2030 Policies. Information 2022, 13, 355. [Google Scholar] [CrossRef]
- Rindone, C. Sustainable Mobility as a Service: Supply Analysis and Test Cases. Information 2022, 13, 351. [Google Scholar] [CrossRef]
- Panuccio, P. Sustainable Mobility as a Service: Smart City and Planning. Information 2022, Submitted. [Google Scholar]
- Matyas, M.; Kamargianni, M. Survey Design for Exploring Demand for Mobility as a Service Plans. Transportation 2019, 46, 1525–1558. [Google Scholar] [CrossRef] [Green Version]
- Matyas, M. Opportunities and Barriers to Multimodal Cities: Lessons Learned from in-Depth Interviews about Attitudes towards Mobility as a Service. Eur. Transp. Res. Rev. 2020, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Danaf, M.; Lima Azevedo, C.; Akkinepally, A.P.; Atasoy, B.; Jeong, K.; Seshadri, R.; Ben-Akiva, M. Behavioral Modeling of On-Demand Mobility Services: General Framework and Application to Sustainable Travel Incentives. Transportation 2019, 46, 2017–2039. [Google Scholar] [CrossRef]
- Alonso-González, M.J.; Hoogendoorn-Lanser, S.; van Oort, N.; Cats, O.; Hoogendoorn, S. Drivers and Barriers in Adopting Mobility as a Service (MaaS)—A Latent Class Cluster Analysis of Attitudes. Transp. Res. Part A Policy Pract. 2020, 132, 378–401. [Google Scholar] [CrossRef]
- Feneri, A.-M.; Rasouli, S.; Timmermans, H.J.P. Modeling the Effect of Mobility-as-a-Service on Mode Choice Decisions. Transp. Lett. 2022, 14, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Reck, D.J.; Hensher, D.A.; Ho, C.Q. MaaS Bundle Design. Transp. Res. Part A Policy Pract. 2020, 141, 485–501. [Google Scholar] [CrossRef]
- Vij, A.; Ryan, S.; Sampson, S.; Harris, S. Consumer Preferences for Mobility-as-a-Service (MaaS) in Australia. Transp. Res. Part C Emerg. Technol. 2020, 117, 102699. [Google Scholar] [CrossRef]
- de Luca, S.; Mascia, M. Adaptive Travel Mode Choice in the Era of Mobility as a Service (MaaS): Literature Review and the Hypermode Mode Choice Paradigm. In Models and Technologies for Smart, Sustainable and Safe Transportation Systems; de Luca, S., Di Pace, R., Fiori, C., Eds.; IntechOpen: Rijeka, Croatia, 2021; ISBN 978-1-83880-802-0. [Google Scholar]
- Song, Y.; Li, D.; Cao, Q.; Yang, M.; Ren, G. The Whole Day Path Planning Problem Incorporating Mode Chains Modeling in the Era of Mobility as a Service. Transp. Res. Part C Emerg. Technol. 2021, 132, 103360. [Google Scholar] [CrossRef]
- Kim, S.; Rasouli, S. The Influence of Latent Lifestyle on Acceptance of Mobility-as-a-Service (MaaS): A Hierarchical Latent Variable and Latent Class Approach. Transp. Res. Part A Policy Pract. 2022, 159, 304–319. [Google Scholar] [CrossRef]
- Bushell, J.; Merkert, R.; Beck, M.J. Consumer Preferences for Operator Collaboration in Intra- and Intercity Transport Ecosystems: Institutionalising Platforms to Facilitate MaaS 2.0. Transp. Res. Part A Policy Pract. 2022, 160, 160–178. [Google Scholar] [CrossRef]
- Vitetta, A.; Rindone, C.; Musolino, G.; Vitale, A. Indagine Pilota Su Scenari Mobility As a Service (MaaS) Nello Stretto Di Messina. LaborEst 2022, 50–56. [Google Scholar] [CrossRef]
- Birgillito, G.; Rindone, C.; Vitetta, A. Passenger Mobility in a Discontinuous Space: Modelling Access/Egress to Maritime Barrier in a Case Study. J. Adv. Transp. 2018, 2018, 6518329. [Google Scholar] [CrossRef]
- Russo, F.; Chilà, G. A Sequential Dynamic Choice Model to Simulate Demand in Evacuation Conditions. In Proceedings of the 7th International Conference on Computer Simulation in Risk Analysis and Hazard Mitigation, Algarve, Portugal, 26 August 2010; pp. 431–442. [Google Scholar]
- Panuccio, P. Smart Planning: From City to Territorial System. Sustainability 2019, 11, 7184. [Google Scholar] [CrossRef] [Green Version]
- Cirianni, F.; Monterosso, C.; Panuccio, P.; Rindone, C. A Review Methodology of Sustainable Urban Mobility Plans: Objectives and Actions to Promote Cycling and Pedestrian Mobility. In Smart and Sustainable Planning for Cities and Regions; Green Energy and Technology; Bisello, A., Vettorato, D., Laconte, P., Costa, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 685–697. ISBN 978-3-319-75773-5. [Google Scholar]
- Russo, F.; Rindone, C. Regional Transport Plans: From Direction Role Denied to Common Rules Identified. Sustainability 2021, 13, 9052. [Google Scholar] [CrossRef]
- Manski, C.F. The Structure of Random Utility Models. Theor. Decis. 1977, 8, 229–254. [Google Scholar] [CrossRef]
- Cascetta, E.; Russo, F.; Viola, F.A.; Vitetta, A. A Model of Route Perception in Urban Road Networks. Transp. Res. Part B Methodol. 2002, 36, 577–592. [Google Scholar] [CrossRef]
- Quattrone, A.; Vitetta, A. Random and Fuzzy Utility Models for Road Route Choice. Transp. Res. Part E Logist. Transp. Rev. 2011, 47, 1126–1139. [Google Scholar] [CrossRef]
- Vitetta, A. Quantum Utility Model for Route Choice in Transport Systems. Travel Behav. Soc. 2016, 3, 29–37. [Google Scholar] [CrossRef]
- Di Gangi, M.; Vitetta, A. Quantum Utility and Random Utility Model for Path Choice Modelling: Specification and Aggregate Calibration from Traffic Counts. J. Choice Model. 2021, 40, 100290. [Google Scholar] [CrossRef]
- Vitetta, A. Sentiment Analysis Models with Bayesian Approach: A Bike Preference Application in Metropolitan Cities. J. Adv. Transp. 2022, 2022, 2499282. [Google Scholar] [CrossRef]
- Train, K. Discrete Choice Methods with Simulation, 2nd ed.Cambridge University Press: Cambridge; NY, USA, 2009; ISBN 978-0-521-76655-5. [Google Scholar]
- Nuzzolo, A.; Crisalli, U.; Comi, A.; Rosati, L. Individual Behavioural Models for Personal Transit Pre-Trip Planners. Transp. Res. Procedia 2015, 5, 30–43. [Google Scholar] [CrossRef]
- Nuzzolo, A.; Comi, A. A Subjective Optimal Strategy for Transit Simulation Models. J. Adv. Transp. 2018, 2018, 8797328. [Google Scholar] [CrossRef]
- Croce, A.I.; Musolino, G.; Rindone, C.; Vitetta, A. Transport System Models and Big Data: Zoning and Graph Building with Traditional Surveys, FCD and GIS. IJGI 2019, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Public Transport Planning with Smart Card Data, 1st ed.; Kurauchi, F.; Schmöcker, J.-D. (Eds.) CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4987-2659-7. [Google Scholar]
- Musolino, D. Characteristics and Effects of Twin Cities Integration: The Case of Reggio Calabria and Messina, ‘Walled Cities’ in Southern Italy. Reg. Sci. Policy Pract. 2018, 10, 315–334. [Google Scholar] [CrossRef]
Publ. n. | Travel Choice | Survey | Approach | Parameters | City/Nation |
---|---|---|---|---|---|
[14] | Bundle | RP/SP | M (behavioural) | X | London (UK) |
[19] | Bundle | RP/SP | M (behavioural) | X | London (UK) |
[20] | Bundle | RP/SP | M (behavioural) | X | London (UK) |
[21] | Mode-service | RP/SP | M (behavioural) | X | Cambridge (USA) |
[22] | Mode | SP | S (cluster) | -- | The Netherland |
[23] | Bundle/mode | SP | M (behavioural) | X | The Netherland |
[24] | Bundle | -- | S | -- | -- |
[25] | Bundle/Mode | SP/RP | M (behavioural) | X | Australia |
[26] | Mode | SP/RP | S (sample) | -- | London (UK) |
[30,31] | Bundle | RP/SP | S (sample) | -- | Strait of Messina (Italy) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musolino, G. Sustainable Mobility as a Service: Demand Analysis and Case Studies. Information 2022, 13, 376. https://doi.org/10.3390/info13080376
Musolino G. Sustainable Mobility as a Service: Demand Analysis and Case Studies. Information. 2022; 13(8):376. https://doi.org/10.3390/info13080376
Chicago/Turabian StyleMusolino, Giuseppe. 2022. "Sustainable Mobility as a Service: Demand Analysis and Case Studies" Information 13, no. 8: 376. https://doi.org/10.3390/info13080376
APA StyleMusolino, G. (2022). Sustainable Mobility as a Service: Demand Analysis and Case Studies. Information, 13(8), 376. https://doi.org/10.3390/info13080376