Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Dataset Description
3.2. Data Pre-Processing
3.3. Classification
3.3.1. Random Forest
3.3.2. k-NN
3.3.3. Multi-Class SVM
3.4. Artificial Neural Network
Long Short-Term Memory
3.5. Evaluation Criteria
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paul, P.; George, T. An Effective Approach for Human Activity Recognition on Smartphone. In Proceedings of the 2015 IEEE International Conference on Engineering and Technology (ICETECH), Coimbatore, India, 20–20 March 2015; pp. 1–3. [Google Scholar]
- World Health Organization; The World Bank. World Report on Disability 2011; World Health Organization: Geneva, Switzerland, 2011; Volume 91, p. 549. [Google Scholar]
- Kementrian Kesehatan Republic Indonesia. Situasi Penyandang Disabilitas. 2014. Available online: https://pusdatin.kemkes.go.id/article/view/15033100002/situasi-penyandang-disabilitas.html (accessed on 3 March 2022).
- Du, Y.; Lim, Y.; Tan, Y. A Novel Human Activity Recognition and Prediction in Smart Home Based on Interaction. Sensors 2019, 19, 4474. [Google Scholar] [CrossRef] [PubMed]
- Bustoni, I.A.; Hidayatulloh, I.; Azhari, S.N.; Augoestin, N.G. Multidimensional Earcon Interaction Design for The Blind: A Proposal and Evaluation. In Proceedings of the 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 21–22 November 2018; pp. 384–388. [Google Scholar] [CrossRef]
- Chernbumroong, S.; Cang, S.; Atkins, A.; Yu, H. Elderly activities recognition and classification for applications in assisted living, Expert Systems with Applications. Expert Syst. Appl. 2013, 40, 1662–1674. [Google Scholar] [CrossRef]
- Bulbul, E.; Cetin, A.; Dogru, I.A. Human Activity Recognition Using Smartphones. In Proceedings of the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 19–21 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Bayat, A.; Pomplun, M.; Tran, D.A. A Study on Human Activity Recognition Using Accelerometer Data from Smartphones. Procedia Comput. Sci. 2014, 34, 450–457. [Google Scholar] [CrossRef]
- Nguyen, T.H.C.; Nebel, J.C.; Florez-Revuelta, F. Recognition of activities of daily living with egocentric vision: A review. Sensors 2016, 16, 72. [Google Scholar] [CrossRef]
- Dhiman, C.; Vishwakarma, D.K. Review of state-of-the-art techniques for abnormal human activity recognition. Eng. Appl. Artif. Intell. 2019, 77, 21–45. [Google Scholar] [CrossRef]
- Cheng, G.; Wan, Y.; Saudagar, A.N.; Namuduri, K.; Buckles, B.P. Advances in human action recognition: A survey. arXiv 2015, arXiv:1501.05964. [Google Scholar]
- Saraswathi, D.; Srinivasan, E. Performance analysis of mammogram CAD system using SVM and KNN classifier. In Proceedings of the 2017 International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017; pp. 1–5. [Google Scholar]
- Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges, and Opportunities. ACM Comput. Surv. 2021, 54, 77. [Google Scholar] [CrossRef]
- Chen, K.; Yao, L.; Zhang, D.; Wang, X.; Chang, X.; Nie, F. A semisupervised recurrent convolutional attention model for human activity recognition. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1747–1756. [Google Scholar] [CrossRef]
- Zeng, M.; Gao, H.; Yu, T.; Mengshoel, O.J.; Langseth, H.; Lane, I.; Liu, X. Understanding and improving recurrent networks for human activity recognition by continuous attention. In Proceedings of the 2018 ACM International Symposium on Wearable Computers, Singapore, 8–12 October 2018; ACM: New York, NY, USA, 2018; pp. 56–63. [Google Scholar]
- Chen, K.; Yao, L.; Zhang, D.; Guo, B.; Yu, Z. Multi-agent Attentional Activity Recognition. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI, Macao, China, 10–16 August 2019; pp. 1344–1350. [Google Scholar]
- Bustoni, I.A.; Hidayatulloh, I.; Ningtyas, A.M.; Purwaningsih, A.; Azhari, S.N. Classification methods performance on human activity recognition. J. Phys. Conf. Ser. ICTVT 2019, 1456, 012027. [Google Scholar] [CrossRef]
- Xia, K.; Huang, J.; Wang, H. LSTM-CNN Architecture for Human Activity Recognition. IEEE Access 2020, 8, 56855–56866. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, Z.; Nie, J.; Huang, L.; Wang, S.; Li, Z. A review on human activity recognition using vision-based method. J. Healthc. Eng. 2017. Available online: https://www.hindawi.com/journals/jhe/2017/3090343/ (accessed on 10 July 2019).
- Ougiaroglou, S.; Nanopoulos, A.; Papadopoulos, A.N.; Manolopoulos, Y.; Welzer-Druzovec, T. Adaptive k-Nearest-Neighbor Classification Using a Dynamic Number of Nearest Neighbors. In Proceedings of the 11th East European Conference, ADBIS 2007, Varna, Bulgaria, 29 September–3 October 2007; pp. 66–82. [Google Scholar]
- Reyes-Ortiz, J.; Ghio, A.; Anguita, D.; Parra-Llanas, X.; Cabestany, J.; Catalá, A. Human activity and motion disorder recognition: Towards smarter interactive cognitive environments. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013. [Google Scholar]
- Madarshahian, R.; Caicedo, J.M. Human Activity Recognition Using Multinomial Logistic Regression. Model Valid. Uncertain. Quantif. 2015, 3, 363–372. [Google Scholar]
- Uddin, T.; Billah, M.; Hossain, F. Random forests based recognition of human activities and postural transitions on smartphone. In Proceedings of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 13–14 May 2016; pp. 250–255. [Google Scholar] [CrossRef]
- Usharani, J.; Saktivel, U. Human Activity Recognition using Android Smartphone. In Proceedings of the International Conference on Innovations in Computing & Networking ICICN16, Bengaluru, Karnataka, 12–13 May 2016. [Google Scholar]
- Vakili, M.; Rezaei, M. Incremental Learning Techniques for Online Human Activity Recognition. arXiv 2021, arXiv:2109.09435. [Google Scholar]
- Muangprathub, J.; Sriwichian, A.; Wanichsombat, A.; Kajornkasirat, S.; Nillaor, P.; Boonjing, V. A Novel Elderly Tracking System Using Machine Learning to Classify Signals from Mobile and Wearable Sensors. Int. J. Environ. Res. Public Health 2021, 18, 12652. [Google Scholar] [CrossRef] [PubMed]
- Anguita, D.; Ghio, A.; Oneto, L.; Parra-Llanas, X.; Reyes-Ortiz, J. Energy Efficient Smartphone-Based Activity Recognition using Fixed-Point Arithmetic. J. Univers. Comput. Sci. 2013, 19, 1295–1314. [Google Scholar]
- Uddin, Z.; Soylu, A. Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning. Sci. Rep. 2021, 11, 16455. [Google Scholar] [CrossRef]
- Murad, A.; Pyun, J.-Y. Deep Recurrent Neural Networks for Human Activity Recognition. Sensors 2017, 17, 2556. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, J.; Li, Q. Smartphone-Based Activity Recognition for Indoor Localization Using a Convolutional Neural Network. Sensors 2019, 19, 621. [Google Scholar] [CrossRef]
- Nan, Y.; Lovell, N.H.; Redmond, S.J.; Wang, K.; Delbaere, K.; van Schooten, K.S. Deep Learning for Activity Recognition in Older People Using a Pocket-Worn Smartphone. Sensors 2020, 20, 7195. [Google Scholar] [CrossRef]
- Anguita, D.; Ghio, A.; Oneto, L.; Parra Perez, X.; Reyes Ortiz, J.L. A Public Domain Dataset for Human Activity Recognition Using Smartphones. In Proceedings of the 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium, 24–26 April 2013. [Google Scholar]
- Torres, R.L.S.; Ranasinghe, D.C.; Shi, Q.; Sample, A.P. Sensor enabled wearable RFID technology for mitigating the risk of falls near beds. In Proceedings of the 2013 IEEE International Conference on RFID, Orlando, FL, USA, 30 April–2 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 191–198. [Google Scholar]
- Alrazzak, U.; Alhalabi, B. A survey on human activity recognition using accelerometer sensor. In Proceedings of the Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Spokane, WA, USA, 30 May–2 June 2019; pp. 152–159. [Google Scholar] [CrossRef]
- Mobark, M.; Chuprat, S. Recognition of complex human activity using mobile phones: A systematic literature review. J. Theor. Appl. Inf. Technol. 2018, 96, 3756–3779. [Google Scholar]
- Strobl, C.; Boulesteix, A.-L.; Augustin, T. Unbiased split selection for classification trees based on the gini index. Comput. Stat. Data Anal. 2006, 52, 483–501. [Google Scholar] [CrossRef]
- Karthick, G.; Harikumar, R. Comparative Performance Analysis of Naive Bayes and SVM classifier for Oral X-ray images. In Proceedings of the 4th International Conference on Electronics and Communcation Systems (ICECS), Coimbatore, India, 24–25 February 2017; Volume 17, pp. 88–92. [Google Scholar]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar] [CrossRef]
- Patle, A.; Chouhan, D.S. SVM kernel functions for classification. In Proceedings of the International Conference on Advances in Technology and Engineering (ICATE), Mumbai, India, 23–25 January 2013. [Google Scholar] [CrossRef]
- Ahatsham; Singh, A.; Shahare, V.; Arora, N. An Efficient System for Early Diagnosis of Breast Cancer using Support Vector Machine. Int. J. Eng. Adv. Technol. (IJEAT) 2019, 9, 7029–7035. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Yang, J.-Y.; Liou, S.-N.; Lee, G.-Y.; Wang, J.-S. Online classifier construction algorithm for human activity detection using a tri-axial accelerometer. Appl. Math. Comput. 2008, 205, 849–860. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Li, W.; Ogunbona, P.O. Human detection from images and videos: A survey. Pattern Recognit. 2016, 51, 148–175. [Google Scholar] [CrossRef]
- Khan, A.M.; Lee, Y.-K.; Lee, S.Y.; Kim, T.-S. Human Activity Recognition via an Accelerometer-Enabled-Smartphone Using Kernel Discriminant Analysis. In Proceedings of the 2010 5th International Conference on Future Information Technology, Busan, Korea, 21–23 May 2010; pp. 1–6. [Google Scholar]
- Ahatsham; Jain, S.; Shahare, V.; Arora, N.; Rab, S. Real Time Human Activity Recognition using Smart Phone. Adv. Sci. Eng. Med. 2020, 12, 1200–1203. [Google Scholar]
- Maurer, U.; Smailagic, A.; Siewiorek, D.P.; Deisher, M. Activity recognition and monitoring using multiple sensors on different body positions. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), Cambridge, MA, USA, 3–5 April 2006; pp. 113–116. [Google Scholar]
- Chen, Y.; Zhong, K.; Zhang, J.; Sun, Q.; Zhao, X. LSTM Networks for Mobile Human Activity Recognition. In Proceedings of the 2016 International Conference on Artificial Intelligence: Technologies and Applications, Bangkok, Thailand, 24–25 January 2016; pp. 50–53. [Google Scholar]
- Rahmani, H.; Mian, A.; Shah, M. Learning a deep model for human action recognition from novel viewpoints. IEEE Trans Pattern Anal Mach. Intell. 2018, 40, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. Lect. Notes Comput. Sci. 2005, 3408, 345–359. [Google Scholar]
Activity | RF (%) | k-NN (%) | SVM (%) | ANN (%) | LSTM (%) |
---|---|---|---|---|---|
Walking | 85.60 | 86.31 | 89.47 | 93.78 | 95.08 |
Going Upstairs | 76.02 | 78.88 | 82.84 | 86.50 | 92.78 |
Going Downstairs | 76.54 | 75.42 | 80.10 | 86.55 | 94.75 |
Sitting | 87.62 | 93.81 | 93.92 | 95.57 | 96.85 |
Standing | 87.22 | 90.54 | 91.54 | 94.88 | 95.94 |
Laying | 83.10 | 87.34 | 89.50 | 90.10 | 91.77 |
Overall Performance | 82.68 | 85.38 | 87.90 | 91.23 | 94.53 |
Activity | RF (%) | k-NN (%) | SVM (%) | ANN (%) | LSTM (%) |
---|---|---|---|---|---|
Walking | 86.60 | 88.50 | 91.37 | 94.67 | 96.12 |
Going Upstairs | 80.12 | 81.62 | 83.45 | 88.92 | 93.18 |
Going Downstairs | 78.45 | 79.53 | 81.88 | 87.15 | 95.57 |
Sitting | 92.76 | 94.16 | 95.89 | 97.22 | 97.11 |
Standing | 90.14 | 91.12 | 92.14 | 95.14 | 96.12 |
Laying | 85.70 | 88.16 | 89.73 | 90.38 | 92.18 |
Overall Performance | 85.63 | 87.18 | 89.08 | 92.25 | 95.05 |
Model | Avg. Precision (%) | Avg. Recall (%) | Avg. Accuracy (%) | F1-Score (%) | Time (min) |
---|---|---|---|---|---|
RF | 81.40 | 78.41 | 82.68 | 79.88 | 0.53 |
k-NN | 83.57 | 81.71 | 85.38 | 82.63 | 0.92 |
SVM | 87.14 | 85.62 | 87.90 | 86.37 | 0.08 |
ANN | 88.81 | 89.11 | 91.23 | 88.96 | 1.22 |
LSTM | 90.78 | 92.62 | 94.53 | 91.69 | 0.72 |
Model | Avg. Precision (%) | Avg. Recall (%) | Avg. Accuracy (%) | F1-Score (%) | Time (min) |
---|---|---|---|---|---|
RF | 82.22 | 80.10 | 85.63 | 81.15 | 2.24 |
k-NN | 85.41 | 82.30 | 87.18 | 83.83 | 4.20 |
SVM | 88.98 | 87.80 | 89.08 | 88.39 | 0.42 |
ANN | 89.20 | 91.78 | 92.25 | 90.47 | 3.78 |
LSTM | 92.87 | 94.32 | 95.05 | 93.59 | 2.92 |
Model | Avg. Precision (%) | Avg. Recall (%) | Avg. Accuracy (%) | F1-Score (%) |
---|---|---|---|---|
RF | 81.47 | 79.27 | 85.61 | 80.35 |
k-NN | 86.77 | 83.14 | 86.35 | 84.92 |
SVM | 87.12 | 86.81 | 88.13 | 86.96 |
ANN | 90.57 | 90.29 | 91.77 | 90.43 |
LSTM | 91.16 | 93.24 | 94.84 | 92.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, A.; Morgado-Dias, F.; Bhuyan, B.P.; Tomar, R. Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches. Information 2022, 13, 275. https://doi.org/10.3390/info13060275
Hayat A, Morgado-Dias F, Bhuyan BP, Tomar R. Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches. Information. 2022; 13(6):275. https://doi.org/10.3390/info13060275
Chicago/Turabian StyleHayat, Ahatsham, Fernando Morgado-Dias, Bikram Pratim Bhuyan, and Ravi Tomar. 2022. "Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches" Information 13, no. 6: 275. https://doi.org/10.3390/info13060275
APA StyleHayat, A., Morgado-Dias, F., Bhuyan, B. P., & Tomar, R. (2022). Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches. Information, 13(6), 275. https://doi.org/10.3390/info13060275