Measurement in the Age of Information
Abstract
:1. Introduction
1.1. The Shore of Our Ignorance
1.2. Compression, Complexity, and Clustering
2. An Information Theoretic Approach to Measurement
2.1. Intrinsic to What?
2.2. Importance of Sparse Representation
- While ;
- Draw a new sample, , and initialize K and ;
- Find a sparse coding: ;
- Update dictionary: ;
- Update number of iterations: .
3. Data-Driven Measurement
3.1. Compressed Sensing with Prior Information
3.2. Tailored Sensing
4. A Framework toward “Fourth-Paradigm” Metrology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kubin, G. What Is a Chaotic Signal? IEEE Workshop on Nonlinear Signal and Image Processing: Neos Marmaras, Greece, 1995. [Google Scholar]
- Vim, I. International vocabulary of basic and general terms in metrology (VIM). Int. Organ. 2004, 2004, 9–14. [Google Scholar]
- Wheeler, J. Gravity quantized? Sci. Am. 1992, 267, 20. [Google Scholar]
- Asimov, I. Foundation; Gnome Press: New York, NY, USA, 1951. [Google Scholar]
- Miller, R.A. Origins of the Japanese Language: Lectures in Japan during the Academic Year 1977–1978; University of Washington Press: Seattle, WA, USA, 1980. [Google Scholar]
- Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Manohar, K.; Brunton, B.W.; Kutz, J.N.; Brunton, S.L. Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns. IEEE Control Syst. Mag. 2018, 38, 63–86. [Google Scholar]
- Borges, J.L. The library of Babel. Collected Fictions; Andrew Hurley Penguin: New York, NY, USA, 1998. [Google Scholar]
- Von Luxburg, U.; Williamson, R.C.; Guyon, I. Clustering: Science or art? In Proceedings of the ICML Workshop on Unsupervised and Transfer Learning, JMLR Workshop and Conference Proceedings, Bellevue, WA, USA, 28 June–2 July 2012; pp. 65–79. [Google Scholar]
- Mangan, N.M.; Kutz, J.N.; Brunton, S.L.; Proctor, J.L. Model selection for dynamical systems via sparse regression and information criteria. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170009. [Google Scholar] [CrossRef] [Green Version]
- Udrescu, S.M.; Tan, A.; Feng, J.; Neto, O.; Wu, T.; Tegmark, M. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. arXiv 2020, arXiv:2006.10782. [Google Scholar]
- Pelleg, D.; Moore, A.W. X-means: Extending k-means with efficient estimation of the number of clusters. In Proceedings of the Icml, Stanford, CA, USA, 29 June–2 July 2000; Volume 1, pp. 727–734. [Google Scholar]
- Cilibrasi, R.; Vitányi, P.M. Clustering by compression. IEEE Trans. Inf. Theory 2005, 51, 1523–1545. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Gács, P.; Li, M.; Vitányi, P.M.; Zurek, W.H. Information distance. IEEE Trans. Inf. Theory 1998, 44, 1407–1423. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Chiao, C.C.; Cronin, T.W.; Osorio, D. Color signals in natural scenes: Characteristics of reflectance spectra and effects of natural illuminants. JOSA A 2000, 17, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Webler, F.S.; Spitschan, M.; Foster, R.G.; Andersen, M.; Peirson, S.N. What is the ‘spectral diet’of humans? Curr. Opin. Behav. Sci. 2019, 30, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Jacques, L. A short note on compressed sensing with partially known signal support. Signal Process. 2010, 90, 3308–3312. [Google Scholar] [CrossRef] [Green Version]
- Gribbin, J.; Gribbin, M. Richard Feynman: A Life in Science; Icon Books: Cambridge, UK, 2018. [Google Scholar]
- BIPM. Guide to the Expression of Uncertainty in Measurement; DIANE Publishing: Darby, PA, USA, 1993; Volume 94. [Google Scholar]
- Shannon, C.E. Communication in the presence of noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Camastra, F.; Staiano, A. Intrinsic dimension estimation: Advances and open problems. Inf. Sci. 2016, 328, 26–41. [Google Scholar] [CrossRef]
- Candes, E.; Romberg, J. l1-magic: Recovery of Sparse Signals via Convex Programming. 2005. Available online: www.acm.caltech.edu/l1magic/downloads/l1magic.pdf (accessed on 26 December 2021).
- Candès, E.J. Compressive sampling. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, 22–30 August 2006; Volume 3, pp. 1433–1452. [Google Scholar]
- Duarte, M.F.; Eldar, Y.C. Structured compressed sensing: From theory to applications. IEEE Trans. Signal Process. 2011, 59, 4053–4085. [Google Scholar] [CrossRef] [Green Version]
- Eldar, Y.C.; Kutyniok, G. Compressed Sensing: Theory and Applications; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Kohrt, M. The term ‘grapheme’ in the history and theory of linguisticsv. In New Trends in Graphemics and Orthography; De Gruyter: Berlin, Boston, 1986; pp. 80–96. [Google Scholar]
- Joshi, S.; Boyd, S. Sensor selection via convex optimization. IEEE Trans. Signal Process. 2008, 57, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Kuang, D.; Ding, C.; Park, H. Symmetric nonnegative matrix factorization for graph clustering. In Proceedings of the 2012 SIAM International Conference on Data Mining, SIAM, Anaheim, CA, USA, 26–28 April 2012; pp. 106–117. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Davenport, M.A.; Duarte, M.F.; Eldar, Y.C.; Kutyniok, G. Introduction to Compressed Sensing; Cambridge University Press: Cambridge, UK, 2012; Available online: https://assets.cambridge.org/97811070/05587/excerpt/9781107005587_excerpt.pdf (accessed on 19 December 2021).
- Otter, R. The multiplicative process. Ann. Math. Stat. 1949, 20, 206–224. [Google Scholar] [CrossRef]
- Pietronero, L.; Tosatti, E.; Tosatti, V.; Vespignani, A. Explaining the uneven distribution of numbers in nature: The laws of Benford and Zipf. Phys. A Stat. Mech. Its Appl. 2001, 293, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Yin, P.; Lou, Y.; He, Q.; Xin, J. Minimization of 1–2 for compressed sensing. SIAM J. Sci. Comput. 2015, 37, A536–A563. [Google Scholar] [CrossRef] [Green Version]
- Kreutz-Delgado, K.; Murray, J.F.; Rao, B.D.; Engan, K.; Lee, T.W.; Sejnowski, T.J. Dictionary learning algorithms for sparse representation. Neural Comput. 2003, 15, 349–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purohit, M.; Svitkina, Z.; Kumar, R. Improving online algorithms via ML predictions. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 9684–9693. [Google Scholar]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online dictionary learning for sparse coding. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 689–696. [Google Scholar]
- Che, D.; Safran, M.; Peng, Z. From big data to big data mining: Challenges, issues, and opportunities. In Proceedings of the International Conference on Database Systems for Advanced Applications, Wuhan, China, 22–25 April 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–15. [Google Scholar]
- Estler, W.T. Measurement as inference: Fundamental ideas. Cirp Ann. 1999, 48, 611–631. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Andrzejak, R.G.; Grassberger, P. Hierarchical clustering using mutual information. EPL Europhys. Lett. 2005, 70, 278. [Google Scholar] [CrossRef] [Green Version]
- Mota, J.F.; Deligiannis, N.; Rodrigues, M.R. Compressed sensing with prior information: Strategies, geometry, and bounds. IEEE Trans. Inf. Theory 2017, 63, 4472–4496. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Liu, Z.; Jin, Z.; Yang, W. Kernel sparse representation based classification. Neurocomputing 2012, 77, 120–128. [Google Scholar] [CrossRef]
- Clark, E.; Brunton, S.L.; Kutz, J.N. Multi-fidelity sensor selection: Greedy algorithms to place cheap and expensive sensors with cost constraints. IEEE Sens. J. 2020, 21, 600–611. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. On tables of random numbers. Sankhyā Indian J. Stat. Ser. A 1963, 25, 369–376. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Webler, F.; Andersen, M. Measurement in the Age of Information. Information 2022, 13, 111. https://doi.org/10.3390/info13030111
Webler F, Andersen M. Measurement in the Age of Information. Information. 2022; 13(3):111. https://doi.org/10.3390/info13030111
Chicago/Turabian StyleWebler, Forrest, and Marilyne Andersen. 2022. "Measurement in the Age of Information" Information 13, no. 3: 111. https://doi.org/10.3390/info13030111
APA StyleWebler, F., & Andersen, M. (2022). Measurement in the Age of Information. Information, 13(3), 111. https://doi.org/10.3390/info13030111