An Adaptive Multi-Staged Forward Collision Warning System Using a Light Gradient Boosting Machine
Abstract
:1. Introduction
2. Literature Review
2.1. FCW Strategy Based on Fixed Parameters
2.2. FCW Strategy Based on Algorithms
3. Materials and Methods
3.1. Driving Simulation System
3.2. Experiment Design
3.3. Data Collection and Variables
3.4. Methodology
3.4.1. SVM
3.4.2. XGB
3.4.3. LGBM
4. Results
4.1. Performance Comparison of the Three FCW Models
4.2. LGBM-Based FCW Model Assessment
4.3. Proposed FCW Validation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry Public Security. The 2019 National Road Traffic Accident Statistical Analysis; Ministry Public Security: Beijing, China, 2019.
- National Highway Traffic Safety Administration. Advancing Safety on American’s Roads. 2018. Available online: https://www.nhtsa.gov/equipment/driver-assistance-technologies (accessed on 2 May 2022).
- Jamson, A.H.; Lai, F.C.; Carsten, O.M. Potential benefits of an adaptive forward collision warning system. Transp. Res. Part C-Emerg. Technol. 2008, 16, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.X.; Wang, X.S.; Hu, J.Y. Impact on car following behavior of a forward collision warning system with headway monitoring. Transp. Res. Part C-Emerg. Technol. 2020, 111, 226–244. [Google Scholar] [CrossRef]
- Cicchino, J.B. Effectiveness of forward collision warning and autonomous emergency braking systems in reducing front-to-rear crash rates. Accid. Anal. Prev. 2017, 99 Pt A, 142–152. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2012, 12, 2825–2830. [Google Scholar] [CrossRef]
- Lee, D.; Yeo, H. Real-Time Rear-End Collision-Warning System Using a Multilayer Perceptron Neural Network. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3087–3097. [Google Scholar] [CrossRef]
- Yang, W.; Wan, B.; Qu, X. A Forward Collision Warning System Using Driving Intention Recognition of the Front Vehicle and V2V Communication. IEEE Access 2020, 8, 11268–11278. [Google Scholar] [CrossRef]
- Katare, D.; El-Sharkawy, M. Embedded System Enabled Vehicle Collision Detection: An ANN Classifier. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (Ccwc), Las Vegas, NV, USA, 7–9 January 2019; pp. 284–289. [Google Scholar]
- Yang, W.; Liu, J.; Zhou, K.; Zhang, Z.; Qu, X. An Automatic Emergency Braking Model considering Driver’s Intention Recognition of the Front Vehicle. J. Adv. Transp. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Winkler, S.; Werneke, J.; Vollrath, M. Timing of early warning stages in a multi stage collision warning system: Drivers’ evaluation depending on situational influences. Transp. Res. Part F Traffic Psychol. Behav. 2016, 36, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.D.; McGehee, D.V.; Brown, T.L.; Reyes, M.L. Collision warning timing, driver distraction, and driver response to imminent rear-end collisions in a high-fidelity driving simulator. Hum. Factors 2002, 44, 314–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, D.L.; Horrey, W.J.; Lee, J.D.; Regan, M.A. Handbook of Human Factors for Automated, Connected, and Intelligent Vehicles, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Hirst, S.J.; Graham, R. The Format and Presentation of Collision Warnings. In Ergonomics and Safety of Intelligent Driver Interfaces; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Kiefer, R.J.; LeBlanc, D.J.; Flannagan, C.A. Developing an inverse time-to-collision crash alert timing approach based on drivers’ last-second braking and steering judgments. Accid. Anal. Prev. 2005, 37, 295–303. [Google Scholar] [CrossRef]
- Bella, F.; Russo, R. A Collision Warning System for rear-end collision: A driving simulator study. State Art Eur. Quant. Oriented Transp. Logist. Res. 2011, 20, 676–686. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Zhang, D.; Li, K. An Adaptive Longitudinal Driving Assistance System Based on Driver Characteristics. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1–12. [Google Scholar] [CrossRef]
- Fujita, Y.; Akuzawa, K.; Sato, M. Radar Brake System. JSAE Rev. 1995, 16, 219. [Google Scholar] [CrossRef]
- Wei, Z.; Xiang, S.; Xuan, D.; Xu, L. An Adaptive Vehicle Rear-End Collision Warning Algorithm Based on Neural Network. Inf. Manag. Eng. 2011, 236, 305–314. [Google Scholar]
- Lei, Y.; Huang, Z.; Cen, M. Probability Model of Time to Collision Considering Sensor Accuracy. In Proceedings of the 33rd Chinese Control and Decision Conference (Ccdc 2021), Kunming, China, 22–24 May 2021; pp. 2704–2709. [Google Scholar] [CrossRef]
- Wu, C.; Peng, L.; Huang, Z.; Zhong, M.; Chu, D. A method of vehicle motion prediction and collision risk assessment with a simulated vehicular cyber physical system. Transp. Res. Part C-Emerg. Technol. 2014, 47, 179–191. [Google Scholar] [CrossRef]
- Lian, Y.; Zhao, Y.; Hu, L.; Tian, Y. Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy. IEEE Trans. Veh. Technol. 2016, 65, 4079–4094. [Google Scholar] [CrossRef]
- Seiler, P.; Song, B.; Hedrick, J.K. Development of a Collision Avoidance System. In Proceedings of the 1998 SAE International Congress and Exposition, Detroit, MI, USA, 23–26 February 1998. [Google Scholar] [CrossRef]
- Tawfeek, M.H.; El-Basyouny, K. A perceptual forward collision warning model using naturalistic driving data. Can. J. Civ. Eng. 2018, 45, 899–907. [Google Scholar] [CrossRef]
- Yue, L.; Abdel-Aty, M.; Wu, Y.; Ugan, J.; Yuan, C. Effects of forward collision warning technology in different pre-crash scenarios. Transp. Res. Part F-Traffic Psychol. Behav. 2012, 76, 336–352. [Google Scholar] [CrossRef]
- Zhu, B.; Li, W.N.; Wang, Z.; Zhao, Z.; He, R.; Han, J.Y. Identification Strategy of Driving Style Based on Random Forest. Automot. Eng. 2019, 41, 213–218+224. [Google Scholar]
- Vallon, C.; Ercan, Z.; Carvalho, A.; Borrelli, F. A machine learning approach for personalized autonomous lane change initiation and control. In Proceedings of the 2017 28th IEEE Intelligent Vehicles Symposium (Iv 2017), Redondo Beach, CA, USA, 11–14 June 2017; pp. 1590–1595. [Google Scholar]
- Guo, L.; Jia, Y.; Hu, X.; Dong, F. Forwarding Collision Assessment with the Localization Information Using the Machine Learning Method. J. Adv. Transp. 2022, 2022, Artn 9530793. [Google Scholar] [CrossRef]
- Pyo, J.; Bang, J.; Jeong, Y. Front Collision Warning based on Vehicle Detection using CNN. In Proceedings of the 2016 International Soc Design Conference (Isocc), Jeju, Korea, 23–26 October 2016; pp. 163–164. [Google Scholar]
- Naujoks, F.; Totzke, I. Behavioral adaptation caused by predictive warning systems—The case of congestion tail warnings. Transp. Res. Part F Psychol. 2014, 26 Pt A, 49–61. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Li, X.; Yu, C.; Kodaka, K.; Li, K. Driving risk assessment using near-crash database through data mining of tree-based model. Accid. Anal. Prev. 2015, 84, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Kusano, K.D.; Hampton, G. Method for Estimating Time to Collision at Braking in Real-World, Lead Vehicle Stopped Rear-End Crashes for Use in Pre-Crash System Design. SAE Int. J. Passeng. Cars-Mech. Syst. 2011, 4, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.; Gray, R. A comparison of tactile, visual, and auditory warnings for rear-end collision prevention in simulated driving. Hum. Factors 2008, 50, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.I.; Zhu, X.; Sun, D. Human-machine-interface for an advisory collision warning system based on visual signal. J. Automot. Saf. Energy 2015, 6, 37. [Google Scholar]
- Reinmueller, K.; Steinhauser, M. Adaptive forward collision warnings: The impact of imperfect technology on behavioral adaptation, warning effectiveness and acceptance. Accid. Anal. Prev. 2019, 128, 217–229. [Google Scholar] [CrossRef]
- Li, J.; Cheng, B. A study on the collision warning algorithm based on driver drowsiness state. Automot. Eng. 2013, 35, 490–493+515. [Google Scholar] [CrossRef]
- Van Der Laan, J.D.; Heino, A.; De Waard, D. A simple procedure for the assessment of acceptance of advanced transport telematics. Transp. Res. Part C Emerg. Technol. 1997, 5, 1–10. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th Acm Sigkdd International Conferencce on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar] [CrossRef]
- Ojala, M.; Garriga, G.C. Permutation Tests for Studying Classifier Performance. In Proceedings of the Ninth IEEE International Conference on Data Mining, Miami, FL, USA, 6–9 December 2009; p. 2009. [Google Scholar]
- Lundberg, S.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Chen, C.; Zhao, X.; Zhang, Y.; Rong, J.; Liu, X. A graphical modeling method for individual driving behavior and its application in driving safety analysis using GPS data. Transp. Res. Part F-Traffic Psychol. Behav. 2019, 63, 118–134. [Google Scholar] [CrossRef]
LGBM | XGB | SVM | |
---|---|---|---|
Accuracy | 0.96786 | 0.96487 | 0.94096 |
Kappa | 0.91552 | 0.90762 | 0.84838 |
Weighted_Precision | 0.95192 | 0.94691 | 0.92440 |
Weighted_Recall | 0.95179 | 0.94731 | 0.91143 |
Weighted_F1 score | 0.95185 | 0.94707 | 0.91632 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Li, J.; Gong, Z.; Huang, H. An Adaptive Multi-Staged Forward Collision Warning System Using a Light Gradient Boosting Machine. Information 2022, 13, 483. https://doi.org/10.3390/info13100483
Ma J, Li J, Gong Z, Huang H. An Adaptive Multi-Staged Forward Collision Warning System Using a Light Gradient Boosting Machine. Information. 2022; 13(10):483. https://doi.org/10.3390/info13100483
Chicago/Turabian StyleMa, Jun, Jiateng Li, Zaiyan Gong, and Hongwei Huang. 2022. "An Adaptive Multi-Staged Forward Collision Warning System Using a Light Gradient Boosting Machine" Information 13, no. 10: 483. https://doi.org/10.3390/info13100483
APA StyleMa, J., Li, J., Gong, Z., & Huang, H. (2022). An Adaptive Multi-Staged Forward Collision Warning System Using a Light Gradient Boosting Machine. Information, 13(10), 483. https://doi.org/10.3390/info13100483