Modeling Data Flows with Network Calculus in Cyber-Physical Systems: Enabling Feature Analysis for Anomaly Detection Applications
Abstract
:1. Introduction
2. Network Communications in a Cyber-Physical System: Properties and Related Work
3. Modeling Data Flows: Network Calculus
3.1. Preliminaries
3.2. Connecting the Pieces
- Communications from an aggregator or control center to the DERs, which could include changes to control settings;
- Reporting of system state and status back to an aggregator, which is useful for situational awareness and monitoring of system state;
- Other data flows in the network.
4. IEEE 13-Bus Use Case
4.1. Scenarios
- Denial-Of-Service (DOS) - Gateway overloaded or processing slowed;
- Change in control settings, which does not impact network performance but does impact the power system.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Summers, A.; Johnson, J.; Darbali-Zamora, R.; Hansen, C.; Anandan, J.; Showalter, C. A Comparison of DER Voltage Regulation Technologies Using Real-Time Simulations. Energies 2020, 13, 3562. [Google Scholar] [CrossRef]
- Darbali-Zamora, R.; Johnson, J.; Summers, A.; Jones, C.B.; Hansen, C.; Showalter, C. State Estimation-Based Distributed Energy Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments Using a Real-Time Digital Twin. Energies 2021, 14, 774. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Xiang, Y.; Ten, C. Power System Reliability Evaluation with SCADA Cybersecurity Considerations. IEEE Trans. Smart Grid 2015, 6, 1707–1721. [Google Scholar] [CrossRef]
- Zonouz, S.; Rogers, K.M.; Berthier, R.; Bobba, R.B.; Sanders, W.H.; Overbye, T.J. SCPSE: Security-Oriented Cyber-Physical State Estimation for Power Grid Critical Infrastructures. IEEE Trans. Smart Grid 2012, 3, 1790–1799. [Google Scholar] [CrossRef]
- Lai, C.; Jacobs, N.; Hossain-McKenzie, S.; Cordeiro, P.; Onunkwo, I.; Johnson, J. Cyber Security Primer for DER Vendors, Aggregators, and Grid Operators; Sandia Report SAND2017-13113; Sandia National Laboratories: Albuquerque, NM, USA, 2017.
- Case, D.U. Analysis of the Cyber Attack on the Ukrainian Power Grid; Electricity Information Sharing and Analysis Center (E-ISAC): Washington, DC, USA, 2016; Volume 388. [Google Scholar]
- Hemsley, K.E.; Fisher, E. History of Industrial Control System Cyber Incidents; Idaho National Laboratory: Idaho Falls, ID, USA, 2018. [Google Scholar]
- U.S.-Canada Power System Outage Task Force. Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations; U.S.-Canada Power System Outage Task Force: Ottawa, ON, Canada, 2004. [Google Scholar]
- Chavez, A.; Lai, C.; Jacobs, N.; Hossain-McKenzie, S.; Jones, C.B.; Johnson, J.; Summers, A. Hybrid Intrusion Detection System Design for Distributed Energy Resource Systems. In Proceedings of the 2019 IEEE CyberPELS (CyberPELS), Knoxville, TN, USA, 29 April–1 May 2019; pp. 1–6. [Google Scholar]
- Lai, C.; Chavez, A.; Jones, C.B.; Jacobs, N.; Hossain-McKenzie, S.; Johnson, J.; Summers, A. Review of Intrusion Detection Methods and Tools for Distributed Energy Resources; Sandia Technical Report SAND2021-1737; Sandia National Laboratories: Albuquerque, NM, USA, 2021.
- Jacobs, N.; Hossain-McKenzie, S.; Summers, A.; Jones, C.B.; Wright, B.; Chavez, A. Cyber-Physical Observability for the Electric Grid. In Proceedings of the 2020 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 6–7 February 2020; pp. 1–6. [Google Scholar]
- Shi, J.; Wan, J.; Yan, H.; Suo, H. A survey of Cyber-Physical Systems. In Proceedings of the 2011 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 9–11 November 2011; pp. 1–6. [Google Scholar]
- Khaitan, S.K.; McCalley, J.D. Cyber physical system approach for design of power grids: A survey. In Proceedings of the 2013 IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Shahid, A. Cyber-physical modeling and control of smart grids—A new paradigm. In Proceedings of the 2016 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), Minneapolis, MN, USA, 6–9 September 2016; pp. 1–5. [Google Scholar]
- Yu, X.; Xue, Y. Smart Grids: A Cyber-Physical Systems Perspective. Proc. IEEE 2016, 104, 1058–1070. [Google Scholar] [CrossRef]
- Bertsekas, D.; Gallager, R. Data Networks, 2nd ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1992. [Google Scholar]
- Le Boudec, J.Y.; Thiran, P. Network Calculus: A Theory of Deterministic Queuing Systems for the Internet; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Jiang, Y. Network calculus and queueing theory: Two sides of one coin: Invited paper. In Proceedings of the VALUETOOLS ’09: Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools, Pisa, Italy, 20–22 October 2009. [Google Scholar]
- Pandit, K.; Schmitt, J.; Steinmetz, R. Network calculus meets queueing theory—A simulation based approach to bounded queues. In Proceedings of the Twelfth IEEE International Workshop on Quality of Service (IWQOS 2004), Montreal, QC, Canada, 9 June 2004; pp. 114–120. [Google Scholar] [CrossRef]
- Lanotte, R.; Merro, M. A Calculus of Cyber-Physical Systems. arXiv 2016, arXiv:1612.00484. [Google Scholar]
- Lanotte, R.; Merro, M.; Muradore, R.; Viganò, L. A Formal Approach to Cyber-Physical Attacks. In Proceedings of the 2017 IEEE 30th Computer Security Foundations Symposium (CSF), Santa Barbara, CA, USA, 21–25 August 2017; pp. 436–450. [Google Scholar] [CrossRef] [Green Version]
- Pasqualetti, F.; Dörfler, F.; Bullo, F. Cyber-physical attacks in power networks: Models, fundamental limitations and monitor design. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 2195–2201. [Google Scholar] [CrossRef] [Green Version]
- Dörfler, F.; Pasqualetti, F.; Bullo, F. Distributed detection of cyber-physical attacks in power networks: A waveform relaxation approach. In Proceedings of the 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 28–30 September 2011; pp. 1486–1491. [Google Scholar] [CrossRef] [Green Version]
- Burmester, M.; Magkos, E.; Chrissikopoulos, V. Modeling security in cyber-physical systems. Int. J. Crit. Infrastruct. Prot. 2012, 5, 118–126. [Google Scholar] [CrossRef]
- Akella, R.; Tang, H.; McMillin, B.M. Analysis of information flow security in cyber-physical systems. Int. J. Crit. Infrastruct. Prot. 2010, 3, 157–173. [Google Scholar] [CrossRef]
- Sztipanovits, J.; Koutsoukos, X.; Karsai, G.; Kottenstette, N.; Antsaklis, P.; Gupta, V.; Goodwine, B.; Baras, J.; Wang, S. Toward a Science of Cyber–Physical System Integration. Proc. IEEE 2012, 100, 29–44. [Google Scholar] [CrossRef]
- Wang, K.; Ciucu, F.; Lin, C.; Low, S.H. A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid. IEEE J. Sel. Areas Commun. 2012, 30, 1037–1048. [Google Scholar] [CrossRef]
- Van Bemten, A.; Kellerer, W. Network Calculus: A Comprehensive Guide; Technical Report No. 201603; Technical University of Munich: Munich, Germany, 2016. [Google Scholar] [CrossRef]
- IEEE Standard for Ethernet. IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015); IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- IEEE Std 1547-2018. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- NEMA. American National Standard for Electric Power Systems and Equipment-Voltage Rating (60 Hz); National Electrical Manufacturers Association: Rosslyn, VA, USA, 2016. [Google Scholar]
Data Rates | (Mb/s) |
---|---|
1 | |
2 | |
2 | |
10 | |
10 | |
1 | |
2 | |
2 | |
10 | |
10 |
Inverter | Size (kVA) |
---|---|
645b | 10 |
645c | 10 |
634(a,b,c) | 358 |
684a | 10 |
684c | 10 |
680(a,b,c) | 1000 |
675(a,b,c) | 2500 |
Source | Normal (s) | Disrupted (s) |
---|---|---|
645b | 1.3 | 2.2 |
645c | 1.3 | 2.2 |
634(a,b,c) | 1.3 | 1.3 |
684a | 1.3 | 1.3 |
684c | 1.3 | 1.3 |
680(a,b,c) | 1.3 | 1.3 |
675(a,b,c) | 1.3 | 1.3 |
Node | Normal (Mb) | Disrupted (Mb) |
---|---|---|
substation | 1.1 | 1.1 |
substation sw | 1.2 | 1.2 |
utility server | 2 | 2 |
utility net | 2 | 2 |
645 gw | 1.2 | 3 |
645b der | 1.1 | 1.1 |
645c der | 1.1 | 1.1 |
634 gw | 1.2 | 1.2 |
634(a,b,c) der | 1.1 | 1.1 |
{...} gw | 1.2 | 1.2 |
{...} ders | 1.1 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobs, N.; Hossain-McKenzie, S.; Summers, A. Modeling Data Flows with Network Calculus in Cyber-Physical Systems: Enabling Feature Analysis for Anomaly Detection Applications. Information 2021, 12, 255. https://doi.org/10.3390/info12060255
Jacobs N, Hossain-McKenzie S, Summers A. Modeling Data Flows with Network Calculus in Cyber-Physical Systems: Enabling Feature Analysis for Anomaly Detection Applications. Information. 2021; 12(6):255. https://doi.org/10.3390/info12060255
Chicago/Turabian StyleJacobs, Nicholas, Shamina Hossain-McKenzie, and Adam Summers. 2021. "Modeling Data Flows with Network Calculus in Cyber-Physical Systems: Enabling Feature Analysis for Anomaly Detection Applications" Information 12, no. 6: 255. https://doi.org/10.3390/info12060255
APA StyleJacobs, N., Hossain-McKenzie, S., & Summers, A. (2021). Modeling Data Flows with Network Calculus in Cyber-Physical Systems: Enabling Feature Analysis for Anomaly Detection Applications. Information, 12(6), 255. https://doi.org/10.3390/info12060255