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Abstract: The electric grid is becoming increasingly cyber-physical with the addition of smart
technologies, new communication interfaces, and automated grid-support functions. Because of
this, it is no longer sufficient to only study the physical system dynamics, but the cyber system must
also be monitored as well to examine cyber-physical interactions and effects on the overall system.
To address this gap for both operational and security needs, cyber-physical situational awareness
is needed to monitor the system to detect any faults or malicious activity. Techniques and models
to understand the physical system (the power system operation) exist, but methods to study the
cyber system are needed, which can assist in understanding how the network traffic and changes to
network conditions affect applications such as data analysis, intrusion detection systems (IDS), and
anomaly detection. In this paper, we examine and develop models of data flows in communication
networks of cyber-physical systems (CPSs) and explore how network calculus can be utilized to
develop those models for CPSs, with a focus on anomaly and intrusion detection. This provides a
foundation for methods to examine how changes to behavior in the CPS can be modeled and for
investigating cyber effects in CPSs in anomaly detection applications.

Keywords: cyber-physical systems; intrusion detection systems; distributed energy resources;
network calculus; data networks; communications

1. Introduction

The electric grid has been rapidly evolving into a cyber-physical system (CPS) with
the addition of smart grid technologies and advancements which have significantly im-
proved grid operations with greater situational awareness and fast, automated control.
Grid operators are now considering using distributed energy resources (DER) to provide
distribution voltage regulation rather than installing costly voltage regulation hardware. In
utilizing DERs for voltage regulation, operators have the difficult decision of selecting the
best operating mode and settings for the DER [1]. Additional concerns such as any lack of
in-field measurements can be addressed in a variety of ways, such as by using a real-time
digital twin, as in [2], to effectively provide state estimation pseudo-measurements that
can be used to optimize DER operations for distribution voltage regulation.

However, these modernization efforts also include new access interfaces, third-party soft-
ware, and internet-based communications that broaden the grid’s attack surface [3-5]. If not
protected or defended against adequately, cyber attacks and other malicious disturbances
can cause detrimental, cascading impact to the grid [6]. The 2003 Northeast Blackout
demonstrated the critical need for situational awareness across utility systems and im-
provements in state estimation techniques [7]. Moreover, as cyber attacks increase in
frequency and sophistication, this situational awareness can no longer be limited to the
physical system dynamics and needs to be extended to the communications network
connecting devices in the system as well [8].
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To mitigate the serious consequences of malicious grid disturbances, an important
first step is obtaining situational awareness into the cyber and physical states of the system
and their interactions. As mentioned, it no longer suffices to only monitor the physical
system (e.g., power system measurements) to achieve full situational awareness of the grid.
Conversely, applying cybersecurity tools, such as intrusion detection systems (IDS), that
only process cyber data, such as network traffic, is not enough to thwart adversaries from
harming the grid, as is shown in [9]. Even within IDS technologies there are a large variety
of techniques and methods, using various types of data and features to analyze behavior
and detect compromises to system security. These may include analysis of network traffic
or host-based solutions that analyze changes to specific devices, and can also be broken
out into behavioral methods that examine if system behavior has changed from normal
conditions, or signature-based techniques which look for specific indicators of known
exploits or attacks [10].

With all these techniques available, when designing detection algorithms it is still
important to be able to connect what is being measured for the detection algorithm to the
behavior of the CPS. In this manner, we can evaluate performance in detecting compromise
when comparing different techniques and strategies for observing changes to system
behavior, as well as examine any fundamental limitations that may arise. In a CPS, the
features of interest that can inform whether the system is in normal or abnormal conditions
may be physical or cyber signals, and so approaches that model the behavior of both
the cyber and physical components of the system are needed. One way to examine how
well the cyber and physical behavior of a CPS can be measured is through the concept
of cyber-physical observability, which is the ability to determine both cyber and physical
system states from system measurements in finite time, which can be a crucial requirement
for any IDS to be able to detect anomalies and changes to behavior in a CPS and defend
against cyber attacks.

In [11], Jacobs et al. developed an approach to define cyber-physical observability by
combining physical observability algorithms with graph-theoretic network observability
methods. Specifically, a combined cyber-physical directed graph was developed with
both physical grid and communication infrastructure components, and both network
and physical (e.g., phasor measurement unit (PMU) placement algorithms) observability
methods were applied to arrive at the cyber-physical observability definition. To expand
on this work and apply it to informing cyber-physical IDS placement in DER system:s,
this paper will develop the necessary network models to represent data flows for grid
communication traffic and examine how these models can be used to examine features
used in anomaly and intrusion detection [9]. The insights provided by examining features
of the network traffic could then be combined with physical system monitoring and the
resultant physical measures to detect cyber-physical compromise.

This paper’s contribution is in examining the usage of network calculus to model the
impact and behavior of network communications in a CPS for anomaly and intrusion detec-
tion applications. This type of modeling provides a method to connect features of interest
which can be measured in communications traffic to the observable effects of anomalies
in the system, and the ability to represent cyber attacks that affect the communications
capabilities of the cyber network in the CPS. Additionally, while this work concentrates on
data flows for the purpose of examining the ability to detect deviations in CPS behavior
due to anomalies in the CPS, this work can also be useful more generally when studying
both network and physical system behavior in CPS.

In this paper, background on network modeling and properties, as well as a review
of related approaches, are provided in Section 2 and network calculus concepts and their
application for modeling data flows in a communication network are discussed in Section 3.
The developed network modeling approach is demonstrated with the IEEE 13-bus use case
in Section 4. Finally, conclusions are provided in Section 5.
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2. Network Communications in a Cyber-Physical System: Properties and
Related Work

Cyber-physical systems combine physical process dynamics with computation such
as from software and communications; this integration enables comprehensive modeling,
design, and analysis for the entire system [12]. Since the electric grid is increasingly more
connected in cyberspace, as networking and computing devices are used to provided added
functionality through smart grid technologies and other advancements, it is important to
understand the intricacies and interactions between the cyber and physical components of
the system [13-15].

This can be done in many ways; one useful framework to utilize is that of applying
directed graphs to represent the influences and connections between components of the
system. This gives a picture of how all the pieces fit together, but mechanisms to model
those interactions directly are still needed. In a power system, the modeling of the physical
process can be done using established methods and tools from linear systems analysis. In
the process of modeling the communications network behavior, there are several important
characteristics to consider, such as the fact that modern networks are packet-switched,
which results in various characteristics for the dynamic behavior of the system. Further-
more, the dynamics of each node in the communications network needs to be appropriately
modeled, which is often done by representing a device in the communications network
as a first-in first-out (FIFO) queue, while another approach is to examine the bounding
behavior on how data flows through the network. These approaches, coming from the
well-studied fields of queueing theory and network calculus, help us to develop analytical
models of the network traffic [16,17]. Although these two approaches do differ, they are
related to each other, as is shown in [18,19]. For example, in [18] the Lindley recursion
principle, which is an important result in queueing theory, is connected to results from
network calculus to better understand how network calculus deals with queues and how
these two approaches are connected.

Furthermore, for the problems of studying anomaly detection or intrusion detection in
CPSs, especially for cybersecurity applications, it is also important to be able to represent
the propagation of effects to the system due to such anomalous behavior and how this
impacts the performance and security of the CPS. In [20], a hybrid process calculus is
developed to connect the logical behavior of the connected components of a CPS with
the underlying process dynamics. These methods use the language of transition systems
to describe the logical interactions of components, while the physical system is typically
represented by either continuous-time differential equations or discrete time difference
equations. This framework was used develop a method for studying cyber-physical attacks
in CPS in [21], and to provide a way to examine the impact to the CPS from cyber-physical
attacks. This area of related work, which has a background in formal methods, concentrates
on the problems of model verification and model checking, and providing ways to ensure
the CPS meets its operational requirements. The modeling of how data flows through the
communications network, and how features of interest for anomaly detection applications
can be modeled, is not represented here as the connections of components is represented
logically using labeled transition systems.

The detection of cyber-physical attacks in power networks was studied in [22], where
such attacks are represented as additional input signals to linear descriptor systems used
to represent the power network. A variation of that work that focused on distributed
detection of attacks can be found in [23]. In these papers, both limitations and requirements
are provided to determine whether it is possible to detect attacks and algorithms were
developed for detection. However, this work did not model data flows in the communica-
tions network that may be useful for attack detection on the cyber side of the CPS, such as
measuring the amount of traffic going through the network, and is limited to the type of
attacks that inject signals into the state or measurement equations of the dynamical system
being studied rather than studying attacks that may affect the communications capabilities
of the cyber components in the CPS.
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In a paper by Burmester et al., the modeling of security in CPSs is explored, where
the author’s focus on developing a framework for examining effects from an adversary’s
behavior (controlled by a threat model) that encompasses the cyber and physical aspects
of the CPS [24]. The author’s proposed methods for a high level threat model and lever-
aged traditional Byzantine paradigms to capture adversarial behavior in CPSs as state
transitions that are connected to vulnerabilities in the threat model. In [25], Akella et al.
examined the security of information flows in CPS, and did so using event-based logics
and security models for the underlying processes and their execution traces to analyze
whether important security properties, such as confidentiality, are maintained. This area
of work concentrates on capturing vulnerability risk and ensuring that the CPS does not
transition into unsafe or insecure states, and so is powerful in capturing the vulnerabilities
in CPSs but does not aim to model physical or cyber effects and behaviors in the CPS.

Prior work studying the integration of heterogenous components in a CPS include
a paper by Sztipanovits et al. that investigates CPS integration and discuss challenges
due to the heterogeneity of components and interactions [26]. Their paper proposes a
passivity-based design approach in studying the composition of heterogeneous systems,
with their main focus being the stability of the system. The use-case for the paper focuses
on unmanned air vehicles (UAV) and the CPS integration is focused on the control aspects
of the cyber and physical systems and demonstrating how the stability of networked
control systems in CPS can be decoupled from timing uncertainties from network and
platform effects. This is done by ensuring that uncertainty in the network communications
(such as potential data loss or delays) do not inject energy into the system and thus violate
passivity assumptions, but does not deal with system performance other than guaranteeing
system stability.

Lastly, stochastic network calculus has been applied before to the problem of analyzing
power supply reliability with varying renewable energy configurations in the paper by
Wang et al. [27]. In that work, the ability to characterize arrival and service curves in
a queueing system using network calculus is extended for the purpose of modeling the
energy flows from different renewable energy resources rather than for the application of
modeling the communication network itself.

All in all, although there is a great deal of work that has been completed in studying
the communication network of CPSs, few works dive into capturing the communication
system dynamic behavior as a result of cyber-physical events. Most of the literature focuses
on adversarial models and vulnerabilities, which are critical research topics for securing
CPSs. In our paper, we aim to add to that body of work by utilizing network calculus to
capture detailed impact and deviations in behavior to the cyber-side of a CPS to inform
anomaly detection and other security applications.

3. Modeling Data Flows: Network Calculus

Network calculus is an approach to modeling communications networks that allows
us to compute deterministic bounds on data flows. This provides a mechanism to study
network behavior, but also gives several straightforward ways to directly connect these
models with measures of network performance such as latency. There are a variety of ways
this may be useful in practice. One example is providing bounds on how much delay is
observed in a control network, which can be combined with control system requirements
on acceptable delay, or in other words showing that we are within the delay margin for the
control system.

This contrasts with approaches such as queueing theory, which uses data structures
known as queues to examine the behavior of the communications network, and a good
reference for the topic can be found in [16]. Here we utilize network calculus due to how
well the parameters of these models map directly to features that are relevant for examining
performance for IDSs. We provide some background here, but for further details, see [17,28]
for good introductions to the topic.



Information 2021, 12, 255

50f15

3.1. Preliminaries

Network calculus is a paradigm for modeling network behavior that applies the
mathematics of min-plus and max-plus algebra to calculate the performance bounds for
network data flows. This allows a systematic approach to be applied that mirrors that of
conventional linear systems theory, where systems can be studied by their input-output
behavior, and can be combined together in series or parallel to obtain bounds on the data
flows in entire networks.

In network calculus, a specific algebra called min-plus (max-plus) algebra is used
which replaces the addition operation with the infinum (supremum) operation, as shown
in (1), and multiplication is defined to be the standard addition +. Note that S is a subset
of the reals in union with +-oo.

A :=inf(S), VS C RU {+oc0} (1)

This gives the algebraic structure (R U {4co}, A, +). It can be shown that these
operations still satisfy algebraic properties such as associativity, closure, existence of
neutral and zero elements, commutativity, distributivity, and idempotency, see [17] for
details.

With the operations A and +, we can compute bounds on the performance for data
flows in network calculus. However, before we are able to concatenate systems together
we need another important operation: Convolution. This will be defined over a set of
functions that are called wide sense increasing, which is defined in (2). In other words, this
class of functions is such that for any time s greater or equal to a starting time ¢, the value
of the function f(s) > f(t). This class of functions may seem restrictive, but is useful in
practice to describe the properties of bits flowing through a network, and how many bits
have been transmitted or received over time. Furthermore, this make it easier to define
and use operations like convolution, which in min-plus algebra, is defined as shown in (3).
A dual operation of convolution, min-plus deconvolution, can also be defined as in (4).

Fi= {fIs) = £, ¥s = 1} @
(Fog)(E) = inf {f(t=5)+8(s)}, V.9 € F ®
(F08)(8) = suplf(t + ) —g(w)}, Vf g € F @

Min-plus convolution and deconvolution are needed in network calculus to connect
the performance bounds of multiple systems (or sub-systems). For instance, when calcu-
lating overall system performance of a network by combining the values for each node
in the network. These are also used to measure the horizontal and vertical distances, or
deviations, between two curves, as seen in (5) and (6).

h(f,g) = sup{;gg{d (f(t) <g(t+4d)}}

t>0
= inf{d: (f0g)(-d) <0} o
o(f,g) =sup{f(t) —g(t)} = (f©¢)(0) ®)

t>0

These operations assist in calculating the performance measures of the network,
which are defined using functions in network calculus called arrival and service curves.
As mentioned above, these are built using cumulative functions which describe the wide-
sense increasing amount of bits that have been transmitted across a system, over some time
interval [0, t]. These can be generically labeled for some system S as R(t) for the input and
R*(t) for the output, as shown in Figure 1.
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R N R

Figure 1. Relationship between input R() of system S and its output R*(¢).

These types of functions can be used to define and characterize data arrival and service
curves, which give upper and lower bounds on the transmission of data in the network.
Arrival curves give upper bounds on the data arrival times, while service curves give the
minimum rate of transmission of information.

Formally, the function «(f) is an arrival curve if it satisfies the requirements of (7),
which states that during any time interval [0, f], the flow of information is limited by the
function & as an upper bound.

R(t) — R(s) < a(t—s),Vs <t (7)

One of the most common arrival curves used, both for its ease of use and for its
good representation of network dynamics and beneficial mathematical characteristics, is
the affine arrival curve, as seen in (8). This curve allows both for bursts in data flows,
represented by the parameter b, and limits overall traffic volume to the rate r bits per
second. This is the arrival curve we will use later on in Section 4.1.

®)

rt+b t>0
0 otherwise

Service curves are similar to arrival curves in that they give performance guarantees
for data flows, but is instead a lower bound on the minimum amount of data that are output
by a system. This must satisfy the requirement of (9), which states that the difference in the
number of output bits between times fy and t must exceed the minimum service amount,
defined by the rate r.

R*(t) = R*(to) = r(t — to) ©)

A common service curve is the rate-latency service curve, which is a simplified
approximation for a generalized processor sharing node, and models data being served at
rate R, but there is a possible delay for each bit by an amount of time up to time T. This is a
useful model to represent data that may need to wait in a queue before being scheduled to
be processed and forwarded. There are more advanced models that can be used to describe
nodes, such as generalized processor sharing (GPS) nodes, which include dealing with
priority scheduling and multiple data flows, are not considered in this initial work. For
modeling and related background on such models, see [28].

Br1(t) = {R(t - e>T (10)

0 otherwise

This modeling approach gives several straightforward measures of network perfor-
mance that can be examined and utilized using the curves we have just defined, such as
backlog and virtual delay. Since backlog is a measure of how many bits are inside a system
at time ¢, it can be defined as the difference between the number of bits input to the system
and the number of bits output, as shown in (11).

x(t) = R(t) — R*(t) (11)

Similarly, the virtual delay of system S can be computed as the distance in time until
the output R*(¢) equals the input, as shown in (12). Throughout this paper, we will use the
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terms delay and latency interchangeably, and are referring to (12) in whenever these terms
are mentioned.
a(t) = ir;g{r tR(f) <R*(t+1)} (12)
™

There are several bounds on data flows through a system that are important, and help
to define how deviations in performance impact the entire data flow. We will present and
note these results here, but for details on the derivations see [17,28].

Bounds on backlog and delay in a system can be given that use the vertical and
horizontal deviations between the arrival and service curves of a node, or set of nodes, as
given in (5) and (6). In one use case, any violation of these bounds would show anomalous
behavior that could warrant further examination, for maintenance or showing denial-of-
service like conditions. Furthermore, these are useful for calculating the backlog and delay
over entire data flows using the arrival and service curves of the concatenated nodes over
that entire path.

x(t) < o(a, B) (13)
A(t) < h(a, B) (14)

So far, the modeling shown has been developed for systems sending one bit at a time,
or bit-by-bit systems. This can be adjusted to account for packetization, such as seen in
modern communications networks, by shaping the output of each node to fit the required
curve shape. However, the approach is still the same so for the purpose of simplicity we
have left out packetization, as well as priority queueing and scheduling for multiple data
flows for this paper. See [17] for further details on how those considerations are handled in
network calculus models.

3.2. Connecting the Pieces

We now have the pieces to build up a representation of how data flows in the com-
munications network. Although established power system analysis and state estimation
techniques help to give insight into the power system performance, adding in network
calculus modeling will help to examine the behavior of the communications network in
the CPS and get a more complete picture of the overall system.

To accomplish this, we first need to take into consideration the types of data flows
that will be present; these are defined by which nodes in the network need to talk to each
other. Consider an exemplar power system with connected DERs, typically this would
involve a control center, distribution and transmission power system, aggregators, and the
DERs. Control centers can have direct communication with the distribution and power
system, the DERs, and the aggregator (especially if the DERs are not utility-owned) for
communicating control set-points, querying system state, etc. Smart technologies including
smart inverters, used to convert direct current to alternating current power for DERs such
as solar photovoltaic (PV) systems, may also be included in the communication network.
Therefore, some example communications are:

e Communications from an aggregator or control center to the DERs, which could
include changes to control settings;

*  Reporting of system state and status back to an aggregator, which is useful for situa-
tional awareness and monitoring of system state;

e Other data flows in the network.

To build up and analyze each of these data flows, as well as the aggregate whole of
the network behavior, we will need to characterize the starting locations and destinations,
which will give us candidate paths that must be traversed for data to travel. Routing and
scheduling considerations are not considered in this paper for simplicity, but will be added
in the future.

For this work, we will use the simple example network shown in Figure 2, that is
associated with the IEEE 13-bus system with added DERs, shown in Figure 3. DERs are
added to nodes 645, 634, 684, 675, and 680. Each of these DERs are assumed to have
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communication back to the utility network (e.g., via smart meters, smart inverters), and a
small representative communications network was developed to connect these DERs back
to a utility control network. Here, we assume that all inverters are communicating back to
a central server located in another location in the utility network. More information on the
DERs and their configuration can be found in Section 4.

Switch Substation

DER 645b

DER 645c

Utility
Network

DER 634abc

! DER 684a
Switch

DER 684c

DER 675abc

DER 680abc

Figure 2. Representative network structure for IEEE 13-bus test system with extensive distributed
energy resource (DER) usage, derived from [11].

— a1l
2 DER 3 4 5 _% F 6
DER
L] L] L] zls Qo
2 2 g -8
% g DER
- o—
a 7 8 9 2 10 9 11
. DER " ’
12 13
3 2

DER

Figure 3. IEEE 13-bus Test Feeder with added DER locations.

We will utilize the affine arrival and rate-latency service curves, from (7) and (9),
to build our model of network data flows. The network parameters for bit rates will be
defined as in Table 1. These parameters are setup as shown here for illustrative purposes.
The values used for the data rates in this network are determined so as to be similar to the
nominal data rate of 10 megabits per second (Mb/s) of Ethernet, as found in the IEEE 802.3
standard [29], while having slightly lower data rates for some of the devices to represent
variations in equipment. Note that this is illustrative only, and that these values also
incorporate timing considerations and data rates for the device characteristics themselves
and their ability to process traffic, which would need to be represented in practice. The
delay for each individual node will be set to 0.1 s except for the utility network, which will
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have a delay of Ty = 0.5 s since there are multiple hops internal to that node that have
been abstracted away. For simplicity, we will set the burstiness parameter b = 1 kB of (7)
in this paper for all nodes. We will assume that all the DERs have similar characteristics in
respect to their network connectivity and will, therefore, be modeled with the same data
rates r4,, and R, for all 7 inverters. We have also defined an extra server internal to the
utility network to act as an endpoint for communications to and from the DERs, and act as
an aggregator or as a high-level controller for the system.

Table 1. Parameters for Data Flow Model.

Data Rates (Mb/s)
Tder 1
Tow 2
Tsw 2
Tnet 10
Tsror 10
Reer 1
Rguw 2
Rsw 2
Rnet 10

Rsror 10

We can utilize the models for each data node, and by combining multiple systems in
series, we can calculate the arrival and service curves that would result from the arrival
and service curves of each node.

To demonstrate how nodes can be connected together, a subset of the network is
shown in Figure 4. Here, we can compute the output service curve as shown in (15), giving
us our minimal level of service.

ﬁ = (ﬁder ® ﬁgw) (15)

Similarly, the output arrival curve of a system can be recomputed using (16), which
allows us to derive a new arrival curve for the next node in the network. By performing
this operation at each node, we can derive new bounds for the arrival curve for an entire
data flow.

a'(t) = (a0 p) (16)

As noted previously, all this can be used to calculate performance measures for the
network. Recall that b is a parameter that accounts for bursts in the arrival curves, r is
the upper limit for the rate of traffic allowed, and R is the rate for the service rate of the
output service curve. (17) shows how the delay for a data flow can be calculated over
multiple nodes.

b

d=T, T e T
e 7280 ¥ min (R gy, Ry}

(17)

This can be repeated and generalized for n nodes, by performing the same operation
with an aggregated parts of the path.

DER gateway
Tder Rder Tgw : ng

Figure 4. Simple concatenation of network nodes.
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4. IEEE 13-Bus Use Case

To demonstrate how the network communications modeling presented in this paper
can be incorporated in the analysis of a CPS, the scenarios mentioned next in Section 4.1 will
be run on the IEEE 13 node feeder where a representative network structure was developed
and shown in Figure 2. Table 2 shows the kVA rating for these inverter additions, the
point of common coupling (PCC), and the phase configuration. Note that the PCC is given
in the inverter name by the bus number that the inverter is attached to, and the phase
configuration is given by the letters accompanying the bus number (phases 4, b, and/or ¢).

Table 2. Sizes for Inverters added to IEEE 13-Bus Test Feeder.

Inverter Size (kVA)
645b 10
645¢ 10

634(a,b,c) 358
684a 10
684c 10

680(a,b,c) 1000

675(a,b,c) 2500

Considering both the IEEE 13-bus feeder and the communications network shown
in Figure 2, we can utilize the approach developed in [11] to develop a directed graph
of the entire CPS with both the communications network and the power system. This is
shown in Figure 5, and shows how the physical system interacts with the communications
network. Any communication assisted control schemes applied to this CPS would require
data flows through the data network, which can be modeled as done in this paper. Note
that each node in Figure 5 is either a device in the communications network or a bus in the
connected power system (in this case, the IEEE 13-bus feeder), while the directed edges
show the connections that allow each node to interact. Importantly, the cyber side of the
CPS is connected to the physical system through actuation and sensing links.

®675
@ der_675abc

6929 ger_680abc

®gw_680
9684 @652
@ util_server o671 @ dar 684c
®gw 634 @ utility_net ® w684 @der 684
® der 634abc S der_684a
®634 0633 @ substatiqgggwitch
®gw 645
@ substaies0
® der 645b

® 6459 der 645¢

@646

Figure 5. Directed Graph of Cyber-Physical System with Example Communications Network and
IEEE 13-bus Test Feeder.

4.1. Scenarios

To show that this methodology is useful for studying dynamic network behavior, it
is important to show that we can also represent changes to the network and have these
changes affect the output of our analysis. This is done by applying the following scenarios:
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1.  Denial-Of-Service (DOS) - Gateway overloaded or processing slowed;
2. Change in control settings, which does not impact network performance but does
impact the power system.

Note that the results here are only meant to be illustrative, and are not exhaustive.
These scenarios were chosen to demonstrate how changes to behavior in both the power
system and in the communications network can be observed and shown through the
approach developed here. In practice, it would be important to consider that the parameters
of the network model will need to be matched to the actual values of the equipment used,
giving rates for how well data can be transmitted and processed. This step is not examined
here, as we are merely applying a simplistic model as an exemplar system to show how
this methodology can be applied in practice.

In the first scenario, we will examine a scenario that is developed to represent a DOS
scenario. Such a scenario can come about by a variety of ways, including by bombarding
a device with an excessive amount of traffic, by system misconfiguration, or by having
some processing power diverted for unauthorized processes. This will result in the traffic
through this gateway being slowed, which in terms of the network calculus models being
studied here can be represented by modifying either the service data rate R or the delay T.

For both cases, this scenario is performed by adjusting one of the gateways at the DER
sites, specifically gateway 645 as seen in Figure 2. For the first disruption where we are
examining a DOS scenario, we will increase the processing delay on thatnodeto T =15
instead of T' = 100 milliseconds in the normal case, creating a slowdown to one tenth of the
normal speed for the processing of traffic at that node. Note that in terms of the network
calculus models being utilized in this work, this will affect the service curve by delaying its
output as it routes traffic to its destination. In the rate-latency model for the service curve
for a network node, the data are output at a rate R after some delay T, so in this scenario
this disruption will be represented by an increase in T, as we are only increasing the delay
and are assuming the rate R is unaffected. Increasing T will affect the overall time it takes
for bits to traverse the network when they flow through that node. This impact in route
times can be observed by applying Equation (17) to the data flows in our system, which is
shown in Table 3 for a possible set of routes chosen consisting of the DERs to the utility
server. Here, recall that our base parameters are b = 1 kB, and R is as shown in Table 1.

Table 3. Route times for DERs to utility server.

Source Normal (s) Disrupted (s)
645D 1.3 22
645¢ 1.3 2.2
634(a,b,c) 1.3 1.3
6844 1.3 1.3
684c 1.3 1.3
680(a,b,¢) 1.3 1.3
675(a,b,c) 1.3 1.3

Here we see that the impact to gateway 645 is affecting the communication times
for the two DERs that must communicate through that gateway, but not the other routes.
Likewise, the backlog of traffic at each node can be calculated using (11), and the bounds
for the overall backlog along a network data flow can be calculated using (6) and (13). If
we apply (11) for our scenario to calculate the backlog at each node in the system, we will
see the results shown in Table 4.
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Table 4. Backlog for nodes.

Node Normal (Mb) Disrupted (Mb)
substation 1.1 1.1
substation sw 1.2 1.2
utility server 2 2
utility net 2 2
645 gw 1.2 3
645b der 1.1 1.1
645¢ der 1.1 1.1
634 gw 1.2 1.2
634(a,b,c) der 1.1 1.1
{..}gw 1.2 1.2
{...} ders 1.1 1.1

In this scenario, there is an additional backlog of bits at the gateway that was disrupted
by this scenario, but the backlogs for other nodes are not affected. This is because this
value tells us the difference between the arrival and service curves, and in this case we
are examining each node separately, so these values are the max number of bits that are
still being processed at each node. A simple increase in the delay at gateway 645 from
100 milliseconds to 1 s increases the backlog at that node by 150%, a rather significant
increase that will affect any data flows passing through that node, and the overall perfor-
mance of the communications network. As shown here in this simple simulation, this setup
allows us to easily connect a disruption in the service at an individual node to the effects
observed in the network traffic and its behavior.

For DOS scenarios where there may be a misconfiguration or some other cause creating
a complete drop in traffic, this modeling approach can represent the effects by setting the
processing delay T to a very large value, effectively stopping traffic passing through that
node in the network. Note that these results match our intuition but the process used to
get to these results is scalable and usable in larger, more complex networks as well. This
enables more complete analysis of how communications behavior in CPSs may be affected
in various conditions, and how this will affect the CPS overall.

Anomalies in the data network are not the only place where issues arise in CPS, as
there are also scenarios that are very hard to detect solely from traffic. One such scenario
would be an insider threat where there is no large change to network traffic but the control
settings of devices, such as DERs, are modified. This can result in anomalous behavior that
is not modeled in the communications network, so if we are going to comprehensively
model the entire CPS we need to include the physical behavior as well. It is here that we
can see the benefit of including both the physical system and the communications network
as graphs that are combined and interconnected. Furthermore, for distributed CPS where
information about the physical system is transmitted through the communications network
we can leverage information from the network model in studying important properties
for algorithms that are based on the values of physical system states. A scenario is shown
here where the control settings for some of the inverters are changed to disrupt the system,
but the communications network is unmodified. Three different experiments noted as
baseline (BL), Volt-Var (VV), and attacked Volt-Var (AVV) were performed. Figure 6 show
the average feeder voltages for each experiment.

The BL experiment was configured to purposely be well over 1 pu, to highlight the
need for voltage regulation which was communication enabled. The VV experiment used
the default 1547-2018 set-points; with the voltage points = 0.5%, 0.95%, 0.98%, 1.02%, 1.05%,
1.5% and Var points = 0.44% 0.44%, 0%, 0%, —0.44%, —0.44% [30]. The AVV experiment
used the same voltage points in the VV experiment, however the Var points were flipped,
such that Var points = —0.44% —0.44%, 0%, 0%, 0.44%, 0.44%. Inverters 3 and 6 were
selected during the AVV experiment to be configured with the AVV curve, while the other
inverters had the non-effected VV curve. Figure 6, shows the 3 experiments.
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Figure 6. Voltage Per Unit across IEEE 13-bus Test Feeder for Baseline, Volt-Var controlled, and
Attacked Volt-Var Scenarios.

The VV experiment reduced the overall system voltage below the BL voltage. The AVV
experiment raised the average system voltage above the BL average system voltage and
for longer than an hour, above the ANSI C84.1 Range A voltage limits [31]. Note that this
scenario does not impact the network communications, and so would not be represented
in the network model. This helps to demonstrate how there are cases where either the
cyber or physical information in the network may not be descriptive for examining IDS
performance, but by utilizing both information about the network communications and
the physical system we can build a more comprehensive picture of the overall behavior of
the CPS. Thus, as we can see, anomaly detection applications in CPS, the usage of features
of interest from both the network communications and from the underlying physical
system will be important. By providing methods to model and study the combined cyber-
physical behavior utilizing the communication models developed in this work and with
power system modeling we can achieve a much better picture of the system dynamics and
response to anomalies and system disruptions.

5. Conclusions

In this work, we have examined how network calculus can be utilized to develop
models for data flows in a CPS and have discussed how these data flows can be useful in
studying anomalies in network behavior. This provides a few ways to connect the features
that an IDS may study for detection of cyber intrusions with analytical models of a network,
providing a solid foundation to use when studying cyber effects in CPSs.

Specifically, we focused on the electric grid and the application of a cyber-physical IDS
where changes in both cyber and physical systems need to be monitored. It is no longer
sufficient to only focus on physical system situational awareness in the grid (e.g., power
system states); cyber-physical situational awareness is required for maintaining continued
system operation and control, as well as security. Thus, by modeling the grid data flows
using network calculus, a rigorous and detailed approach is achieved to better analyze and
understand the grid’s cyber-physical interactions and behavior.

Future work will extend this research to incorporate more sophisticated characteristics
of cyber systems, such as packetization, priority queueing and scheduling, and lossy sys-
tems (e.g., dropped packets). In addition, a more complete set of cybersecurity scenarios
will be examined for anomaly detection, dealing with more complex behaviors and dis-
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ruptions. Furthermore, this work can be used as a foundation for studying IDS placement
approaches to detect deviations in both cyber and physical parts of a CPS (beyond the
electric grid). Most IDS solutions focus on detecting signatures of malicious activity in
the communications network, and, as mentioned, situational awareness tools and state
estimation in power systems only examine the physical state of the system. By examining
both, a hybrid cyber-physical IDS could potentially improve detection performance in the
CPS and provide mechanisms to formulate suitable response.
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