Harmony Search Method with Global Sharing Factor Based on Natural Number Coding for Vehicle Routing Problem
Abstract
:1. Introduction
2. Theory Basis
2.1. Capacity-Limited Vehicle Routing Problem
2.2. Mathematical Description of Optimization of VRPs
2.3. Basic HS Algorithm
3. GSF-HS-VRP Algorithm
3.1. Concept Definition
3.1.1. Global Sharing Factor of the Harmony Search Algorithm
3.1.2. Coding Method
3.1.3. Learning Strategy
3.1.4. Updating Strategy
3.1.5. Randomly Generating Strategy
3.1.6. Adjusting Strategy
3.1.7. Decoding Method
3.1.8. Objective Function
3.2. Theory of Algorithm
3.3. Algorithm Process
3.4. Algorithm Flowchart
3.5. Algorithm Efficiency Analysis
4. Experiment Design and Results Analysis
4.1. Experiment Design
4.2. Results Analysis
4.2.1. Experiment Results and Analysis of Small-Scale Data
4.2.2. Experiment Results and Analysis of Standard Test Data
Results and Comparison of Two Vehicles
Results and Comparison of Three Vehicles
Results and Comparison of Ten Vehicles
4.2.3. Wilcoxon’s Test
4.2.4. Analysis of Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yan, T. Research on Improved Harmony Search Algorithms for VRP. Master’s Thesis, Zhejiang Normal University, Hangzhou, China, 25 March 2015. [Google Scholar]
- Hu, L.; Wang, Z.; Zhao, F. Gaussian harmony search algorithm for driver satisfaction based logistics distribution path optimization. Appl. Res. Comput. 2015, 32, 3622–3625, 3676. [Google Scholar]
- Lau, H.; Chan, T.; Tsui, W.; Pang, W. Application of genetic algorithms to solve the multidepot vehicle routing problem. IEEE Trans. Autom. Sci. Eng. 2010, 7, 383–392. [Google Scholar] [CrossRef]
- Murray, C.; Park, W. Incorporating human factor considerations in unmanned aerial vehicle routing. IEEE Trans. Syst. Man Cybern. Syst. 2013, 43, 860–869. [Google Scholar] [CrossRef]
- Pavone, M.; Frazzoli, E.; Bullo, F. Adaptive and distributed algorithms for vehicle routing in a stochastic and dynamic environment. IEEE Trans. Autom. Control 2011, 56, 1259–1269. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Wan, F. The solving of Vehicle Routing Problem based on hybrid harmony search algorithm. In Proceedings of the 3rd International Conference on Computational Intelligence and Industrial Application (PACIIA), Wuhan, China, 6–7 November 2010; pp. 379–382. [Google Scholar]
- Karaboga, D.; Basturk, B. On the Performance of Artificial Bee Colony Algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Chen, S.; Locust, S. A new multi-optima search technique. In Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009. [Google Scholar]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Eusuff, M.; Lansey, K. Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm. J. Water Sources Planning Manag. 2003, 129, 210–225. [Google Scholar] [CrossRef]
- Pan, W. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012, 29, 69–74. [Google Scholar] [CrossRef]
- Geem, Z.; Kim, J.; Loganathan, G. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Cuevas, E.; González, A.; Zaldívar, D.; Pérez-Cisneros, M. An optimisation algorithm based on the behaviour of locust swarms. Int. J. Bio-Inspir. Comput. 2015, 7, 402–407. [Google Scholar] [CrossRef]
- Wang, G.; Jin, J. Moth-flame optimization algorithm fused on refraction principle and opposite-based learning. Comput. Eng. Appl. 2019, 55, 46–51. [Google Scholar]
- Han, H.; Pan, Q.; Liang, J. Application of improved harmony search algorithm in function optimization. Comput. Eng. 2010, 36, 245–247. [Google Scholar]
- Zhao, P.; Liu, S. Novel intelligent optimization algorithm and its improvement. J. Chin. Comput. Syst. 2010, 31, 955–958. [Google Scholar]
- Cuevas, E. Block-matching algorithm based on harmony search optimization for motion estimation. Appl. Intell. 2013, 39, 165–183. [Google Scholar] [CrossRef] [Green Version]
- Alia, O.; Mandava, R.; Aziz, M. A hybrid harmony search algorithm for MRI brain segmentation. Evol. Intell. 2011, 4, 31–49. [Google Scholar] [CrossRef]
- Fourie, J. Robust circle detection using Harmony Search. J. Optim. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Moon, Y.; Zong, W.; Han, G. Vanishing point detection for self-driving car using harmony search algorithm. Swarm Evol. Comput. 2018, 41, 111–119. [Google Scholar] [CrossRef]
- Das, S.; Mukhopadhyay, A.; Roy, A.; Abraham, A.; Panigrahi, B. Exploratory power of the Harmony Search Algorithm: Analysis and improvements for global numerical optimization. IEEE Trans. Syst. Man Cybern. 2011, 41, 89–106. [Google Scholar] [CrossRef]
- Liu, L.; Huo, J.; Wang, L.; Han, J. Harmony search algorithm based on shuffled frog leaping and bacterial foraging and its application in image. J. Front. Comput. Sci. Technol. 2015, 9, 119–128. [Google Scholar]
- Liu, L.; Huo, J.; Wang, L. Harmony search algorithm with global sharing factor. J. Chongqing Univ. Technol. (Nat. Sci.) 2014, 28, 82–86. [Google Scholar]
- Liu, L.; Wang, L.; Han, J. Shuffled frog leaping algorithm based on global sharing factor. Comput. Eng. 2013, 39, 162–166, 171. [Google Scholar]
- Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 2007, 188, 1567–1579. [Google Scholar] [CrossRef]
- Omran, M.; Mahdavi, M. Global-best harmony search. Appl. Math. Comput. 2008, 198, 634–656. [Google Scholar] [CrossRef]
- Pan, Q.K.; Suganthan, P.N.; Tasgetiren, M.F.; Liang, J.J. A self-adaptive global best harmony search algorithm for continuous optimization problems. Appl. Math. Comput. 2010, 216, 830–848. [Google Scholar] [CrossRef]
- Available online: http://web.cba.neu.edu/~msolomon/problems.htm (accessed on 4 February 2020).
- García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 Special Session on Real Parameter Optimization. J. Heuristics 2009, 15, 617–644. [Google Scholar] [CrossRef]
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 4 | 6 | 7.5 | 9 | 20 | 10 | 16 | 8 |
1 | 4 | 0 | 6.5 | 4 | 10 | 5 | 7.5 | 11 | 10 |
2 | 6 | 6.5 | 0 | 7.5 | 10 | 10 | 7.5 | 7.5 | 7.5 |
3 | 7.5 | 4 | 7.5 | 0 | 10 | 5 | 9 | 9 | 15 |
4 | 9 | 10 | 10 | 10 | 0 | 10 | 7.5 | 7.5 | 10 |
5 | 20 | 5 | 10 | 5 | 10 | 0 | 7 | 9 | 7.5 |
6 | 10 | 7.5 | 7.5 | 9 | 7.5 | 7 | 0 | 7 | 10 |
7 | 16 | 11 | 7.5 | 9 | 7.5 | 9 | 7 | 0 | 10 |
8 | 8 | 10 | 7.5 | 15 | 10 | 7.5 | 10 | 10 | 0 |
Demand /Ton | 0 | 1 | 2 | 1 | 2 | 1 | 4 | 2 | 2 |
Algorithm | Average Optimum | Standard Deviation | Average Runtime |
---|---|---|---|
HS-VRP | 7.15E+01 | 3.28E+00 | 7.27E+00 |
IHS-VRP | 7.14E+01 | 5.09E+00 | 6.62E+00 |
GHS-VRP | 7.06E+01 | 4.97E+00 | 7.69E+00 |
SGHS-VRP | 7.04E+01 | 4.91E+00 | 1.30E+01 |
GSF-HS-VRP | 6.96E+01 | 4.45E+00 | 7.01E+00 |
Algorithm | Shortest Path Value | Optimization Path of Vehicle 1 | Optimization Path of Vehicle 2 |
---|---|---|---|
HS-VRP | 67.50 | 3-7-8 | 6-5-2 |
IHS-VRP | 66.50 | 1-2-5-3 | 6-7-4 |
GHS-VRP | 79.50 | 6-2-3 | 4-7-5-8-1 |
SGHS-VRP | 73.00 | 1-2-7 | 6-8-4 |
GSF-HS-VRP | 66.00 | 4-5-1-3 | 6-7-2 |
Algorithm | Average Optimum | Standard Deviation | Average Runtime |
---|---|---|---|
HS-VRP | 6.40E+02 | 4.75E+01 | 1.56E+02 |
IHS-VRP | 6.50E+02 | 4.59E+01 | 6.15E+01 |
GHS-VRP | 6.33E+02 | 5.56E+01 | 9.69E+01 |
SGHS-VRP | 6.61E+02 | 6.35E+01 | 3.97E+02 |
GSF-HS-VRP | 6.39E+02 | 4.20E+01 | 3.12E+01 |
Algorithm | Shortest Path Value | Optimization Path of Vehicle 1 | Optimization Path of Vehicle 2 |
---|---|---|---|
HS-VRP | 622.39 | 69-35-38-95-53-58-56-66 | 93-90-60-59-20-24-7-74-39-3 |
IHS-VRP | 699.87 | 93-2-6-22-43-35-54-69-28 | 68-34-50-30-17-58-80-26-63-45-39 |
GHS-VRP | 645.82 | 7-70-58-38-74-33 | 10-78-81-54-49-24-20-5-17-27-30-69-72 |
SGHS-VRP | 692.53 | 27-33-1-95-46-58-34-84-49 | 69-68-10-63-23-9-61-21-89-5-15 |
GSF-HS-VRP | 569.83 | 54-42-13-89-2-100-41-22 | 88-26-85-25-74-50-20-34 |
Algorithm | Average Optimum | Standard Deviation | Average Runtime |
---|---|---|---|
HS-VRP | 1.02E+03 | 7.21E+01 | 7.11E+01 |
IHS-VRP | 1.03E+03 | 8.10E+01 | 7.13E+01 |
GHS-VRP | 1.05E+03 | 7.23E+01 | 1.24E+02 |
SGHS-VRP | 1.02E+03 | 7.60E+01 | 5.93E+02 |
GSF-HS-VRP | 9.77E+02 | 7.63E+01 | 3.66E+01 |
Algorithm | Shortest Path Value | Optimization Path of Vehicle 1 | Optimization Path of Vehicle 2 | Optimization Path of Vehicle 3 |
---|---|---|---|---|
HS-VRP | 1068.12 | 23-4-50-40-81-86-78-85-11-18-8-37 | 43-76-88-21-92-15-6-25-59 | 28-74-98-94-49-34-22-52-95-1 |
IHS-VRP | 1062.02 | 33-16-19-64-73-66-86-44-21-38-68 | 95-11-2-63-98-61-57-40 | 100-29-48-6-89-74-20-80-84-69-72 |
GHS-VRP | 972.97 | 42-74-8-7-6-2-26-48 | 56-69-95-52-53-18-68-50-94-43-27 | 16-14-45-10-63-81-54 |
SGHS-VRP | 1125.37 | 22-66-63-6-83-12-50-13 | 54-58-87-88-52-60-17-89-55 | 95-56-10-93-42-35-64-18-8 |
GSF-HS-VRP | 928.07 | 55-44-82-1-52-88-74-18-90 | 54-53-85-93-100-37-26-3 | 33-47-63-60-81-66-32 |
Algorithm | Average Optimum | Standard Deviation | Average Runtime |
---|---|---|---|
HS-VRP | 3.86 × 103 | 9.63 × 101 | 3.05 × 102 |
IHS-VRP | 3.84 × 103 | 9.39 × 101 | 3.08 × 102 |
GHS-VRP | 3.86 × 103 | 9.45 × 101 | 3.12 × 102 |
SGHS-VRP | 3.83 × 103 | 7.25 × 101 | 1.99 × 103 |
GSF-HS-VRP | 3.82 × 103 | 6.08 × 101 | 7.45 × 101 |
Algorithm | Shortest Path Value | Vehicle 1 | Vehicle 2 | Vehicle 3 | Vehicle 4 | Vehicle 5 | Vehicle 6 | Vehicle 7 | Vehicle 8 | Vehicle 9 | Vehicle 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
HS-VRP | 3964.08 | 60-48-52-33-11-23-28-58-15 | 71-90-34-27-65-3-36-87-1-6-31-84-68 | 7-62-96-39-57-40-64-56-8 | 93-86-24-20-99-82-80-76-73-49-4-18 | 74-32-12-21-25-53-89 | 38-59-29-26-50-72-37-61-95-77-81-67-91 | 51-16-85-75-70-46-97 | 13-2-100-94-42-83-17-63-79 | 45-69-10-92-5-41-54-78-19-47-66-55-14-43-44 | 35-88-30-98-22-9 |
IHS-VRP | 3939.66 | 63-100-75-59-43-68-16-56-89 | 69-87-98-1-54-57-62-8-51-40 | 24-65-10-70-66-53-14-18-35-49-76-85-78 | 94-12-81-77-9-73-61-5-11-7-79-80-31-29-23 | 97-42-72-17-3-93-27-38-46 | 41-13-26-30-21-34-33-96-39-19-45 | 92-2-64-55-67-52-48-20-15-84-50-82 | 74-32-47-91-95-44-90-37-86-36-99 | 71-58-28-22-4-60-88-6 | 12-36-69-0-0-25-83 |
GHS-VRP | 3995.30 | 25-82-9-49-16-64-6-99-26-89-20 | 92-85-24-60-14-38-75-4-48-34-52 | 8-91-12-54-93-95-51-31 | 100-80-18-87-76-81-2-23-35-33 | 19-22-42-47-46-84-65-29-78-79-71-30-59 | 43-73-72-41-67-44-88-90-86-10-7-56-28 | 98-77-27-37-68-36-83-32-61-15-55-50 | 63-3-1-53-45-40-96-13-94-17-66 | 97-5-57-39-58-11-69-62-21 | 80-72-4-19-17-0-0-74-70 |
SGHS-VRP | 3950.63 | 76-15-58-49-73-86-93-7 | 74-62-95-33-18-10-69-42 | 96-6-64-65-78-21-48-85-54-79 | 81-9-46-39-68-72-83-61-27-12-22-34 | 31-51-82-14-43-57-29-41-60-56-94-91 | 13-55-19-99-3-23-1-8-92-90-84-17-44-20 | 100-75-77-26-47-4-87-66-67-53-38-40-28 | 25-50-70-80-98-45-88-59-37-5 | 71-89-24-2-52-32-11-97-16-30 | 36-63-35 |
GSF-HS-VRP | 3855.13 | 35-84-100-68-34-5-53-37-4-67-65-46 | 6-92-2-96-10-60-94-17-45-54-59 | 32-78-98-51-18-13-30-21-70-86 | 79-75-8-9-19-91-25-99-27-1-48-39 | 16-88-95-97-7-74 | 14-12-69-61-93-77-50-55-41-62-44-24-43 | 15-26-38-23-31-40-71-72-83-3-81 | 73-64-56-28-76-42-36-47-85-22-80-89-20 | 63-82-57-66-87-90-58 | 33-49-29-52-11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Huo, J.; Xue, F.; Dai, Y. Harmony Search Method with Global Sharing Factor Based on Natural Number Coding for Vehicle Routing Problem. Information 2020, 11, 86. https://doi.org/10.3390/info11020086
Liu L, Huo J, Xue F, Dai Y. Harmony Search Method with Global Sharing Factor Based on Natural Number Coding for Vehicle Routing Problem. Information. 2020; 11(2):86. https://doi.org/10.3390/info11020086
Chicago/Turabian StyleLiu, Liqun, Jiuyuan Huo, Fei Xue, and Yongqiang Dai. 2020. "Harmony Search Method with Global Sharing Factor Based on Natural Number Coding for Vehicle Routing Problem" Information 11, no. 2: 86. https://doi.org/10.3390/info11020086
APA StyleLiu, L., Huo, J., Xue, F., & Dai, Y. (2020). Harmony Search Method with Global Sharing Factor Based on Natural Number Coding for Vehicle Routing Problem. Information, 11(2), 86. https://doi.org/10.3390/info11020086