Prototype to Increase Crosswalk Safety by Integrating Computer Vision with ITS-G5 Technologies
Abstract
:1. Introduction
2. State of Art
2.1. ETSI ITS-G5 Technology
2.2. Computer Vision for Pedestrian Detection
- Input layer: receives two-dimensional data (images);
- Hidden perceptron payers and its sub-layers:
- Convolution layer: the core of CNNs that has several learnable filters from data;
- Pooling layer: used to reduce the number of parameters and the number of complex computations in training;
- Fully connected layer: takes the output of previous layers and turns them into a single vector that can be an input for the next one.
- Output Layer.
3. Prototype Specification
3.1. ITS-G5 Prototype Architecture
3.2. Computer Vision Solution
3.3. Building DENM Messages
4. Evaluation and Results
4.1. RSU Pedestrian Detection
4.2. RSU DENM Messages Creation
4.3. OBU DENM Messages Reception and Presentation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Annual Accident Report. Available online: https://ec.europa.eu/transport/road_safety/specialist/observatory/statistics/annual_accident_report_en (accessed on 26 September 2020).
- Intelligent Transport Systems, Innovating for the Transport of the Future. Available online: https://ec.europa.eu/transport/themes/its_en (accessed on 26 September 2020).
- Nguyen, V.; Oo, T.Z.; Chuan, P.; Hong, C.S. An Efficient Time Slot Acquisition on the Hybrid TDMA/CSMA Multichannel MAC in VANETs. IEEE Commun. Lett. 2016, 20, 970–973. [Google Scholar] [CrossRef]
- Intelligent Transport Systems (ITS)—Access Layer Specification for Intelligent Transport Systems Operating in the 5 GHz Frequency Band, ETSI Standard EN 302 663 v1.2.1. Available online: https://www.etsi.org/deliver/etsi_en/302600_302699/302663/01.02.00_20/en_302663v010200a.pdf (accessed on 26 September 2020).
- Service Requirements for V2X Services (3GPP TS 22.185 Version 14.3.0 Release 14). Available online: https://www.etsi.org/deliver/etsi_ts/122100_122199/122185/14.03.00_60/ts_122185v140300p.pdf (accessed on 26 September 2020).
- Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications. Facilities Layer Protocols and Communication Requirements for Infrastructure Services Intelligent Transport Systems, Innovating for the Transport of the Future. Available online: https://www.etsi.org/deliver/etsi_ts/103300_103399/103301/01.01.01_60/ts_103301v010101p.pdf (accessed on 26 September 2020).
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- OpenCV. Available online: https://opencv.org/ (accessed on 26 September 2020).
- Javed, M.A.; Hamida, E.B. On the Interrelation of Security, QoS, and Safety in Cooperative ITS. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1943–1957. [Google Scholar] [CrossRef]
- Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking. Part 3: Network Architecture. Available online: https://www.etsi.org/deliver/etsi_ts/102600_102699/10263603/01.01.01_60/ts_10263603v010101p.pdf (accessed on 26 September 2020).
- Intelligent Transport Systems (ITS); V2X Applications. Part 2: Intersection Collision Risk Warning (ICRW) Application Requirements Specification. Available online: https://www.etsi.org/deliver/etsi_ts/101500_101599/10153902/01.01.01_60/ts_10153902v010101p.pdf (accessed on 26 September 2020).
- Festag, A. Cooperative intelligent transport systems standards in europe. IEEE Commun. Mag. 2014, 52, 166–172. [Google Scholar] [CrossRef]
- ETSI; Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications. Part 3: Specifications of Decentralized Environmental Notification Basic Service, 09 2014. Available online: https://www.etsi.org/deliver/etsi_en/302600_302699/30263703/01.02.01_30/en_30263703v010201v.pdf (accessed on 26 September 2020).
- Hamida, E.B.; Noura, H.; Znaidi, W. Security of Cooperative Intelligent Transport Systems: Standards, Threats Analysis and Cryptographic Countermeasures. Electronics 2015, 4, 380–423. [Google Scholar] [CrossRef]
- Stepanova, D.; Sukuvaara, T.; Karsisto, V. Intelligent Transport Systems—Road weather information and forecast system for vehicles. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Almeida, J.; Rufino, J.; Cardoso, F.; Gomes, M.; Ferreira, J. TRUST: Transportation and Road Monitoring System for Ubiquitous Real-Time Information Services. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Jutila, M.; Scholliers, J.; Valta, M.; Kujanpää, K. ITS-G5 performance improvement and evaluation for vulnerable road user safety services. IET Intell. Transp. Syst. 2017, 11, 126–133. [Google Scholar] [CrossRef]
- Fan, S.; Ng, T.-T.; Koenig, B.L.; Herberg, J.S.; Jiang, M.; Shen, Z.; Zhao, Q. Image Visual Realism: From Human Perception to Machine Computation. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2180–2193. [Google Scholar] [CrossRef]
- Yakusheva, N.; Proletarsky, A.; Basarab, M. Pedestrian-Vehicle Collision Avoidance Strategy for NLOS Conditions. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, C.; Lyu, N.; Liu, G.; He, Y. Pedestrian-vehicular collision avoidance based on vision system. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 11–15. [Google Scholar] [CrossRef]
- Rehder, E.; Wirth, F.; Lauer, M.; Stiller, C. Pedestrian Prediction by Planning Using Deep Neural Networks. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 5903–5908. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, S.; Van Schyndel, R.; Khalil, I.; Khalil, I. Safe trajectory estimation at a pedestrian crossing to assist visually impaired people. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 5114–5117. [Google Scholar] [CrossRef]
- Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2006; pp. 430–443. [Google Scholar]
- Xiao, Z.; Yang, Z.; Geng, L.; Zhang, F. Traffic sign detection based on histograms of oriented gradients and boolean convolutional neural networks. In Proceedings of the International Conference on Machine Vision and Information Technology (CMVIT), Singapore, 17–19 February 2017; pp. 111–115. [Google Scholar]
- Bilal, M.; Hanif, S.M. Benchmark Revision for HOG-SVM Pedestrian Detector through Reinvigorated Training and Evaluation Methodologies. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1277–1287. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y. Learning Deep Architectures for AI; Now Publishers Inc.: Boston, MA, USA, 2009. [Google Scholar] [CrossRef]
- Qu, H.; Yuan, T.; Sheng, Z.; Zhang, Y. A Pedestrian Detection Method Based on YOLOv3 Model and Image Enhanced by Retinex. In Proceedings of the 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 13–15 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Eisenbach, M.; Seichter, D.; Wengefeld, T.; Gross, H.-M. Cooperative multi-scale Convolutional Neural Networks for person detection. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 267–276. [Google Scholar] [CrossRef]
- Jin, Y.; Wen, Y.; Liang, J. Embedded Real-Time Pedestrian Detection System Using YOLO Optimized by LNN. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Dong, P.; Wang, W. Better region proposals for pedestrian detection with R-CNN. In Proceedings of the 2016 Visual Communications and Image Processing (VCIP), Chengdu, China, 27–30 November 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Shen, G.; Zhu, L.; Lou, J.; Shen, S.; Liu, Z.; Tang, L. Infrared Multi-Pedestrian Tracking in Vertical View via Siamese Convolution Network. IEEE Access 2019, 7, 42718–42725. [Google Scholar] [CrossRef]
- Noh, B.; No, W.; Lee, J.; Lee, D. Vision-Based Potential Pedestrian Risk Analysis on Unsignalized Crosswalk Using Data Mining Techniques. Appl. Sci. 2020, 10, 1057. [Google Scholar] [CrossRef] [Green Version]
- Laux, S.; Pannu, G.S.; Schneider, S.; Tiemann, J.; Klingler, F.; Sommer, C.; Dressler, F. Demo: OpenC2X—An open source experimental and prototyping platform supporting ETSI ITS-G5. In Proceedings of the 2016 IEEE Vehicular Networking Conference (VNC), Columbus, OH, USA, 8–10 December 2016; pp. 1–2. [Google Scholar] [CrossRef]
Facilities Layer | Value |
---|---|
Intelligent Transport Systems | |
ItsPduHeader | |
protocolVersion: | 1 |
messageID: | denm (1) |
stationID: | 184 |
DENMV1 | |
Management | |
actionID | |
originatingStationID: | 184 |
sequenceNumber: | 1 |
detectionTime: | 2,961,833,238,866 |
referenceTime: | 2,961,833,238,866 |
eventPosition | |
latitude: | 401,994,420 |
longitude: | −84,407,560 |
positionConfidenceEllipse | |
Altitude | |
relevanceDistance: | lessThan50 m (0) |
relevanceTrafficDirection: | allTrafficDirections (0) |
validityDuration: | oneSecondAfterDetection (1) |
stationType: | roadSideUnit (15) |
Situation | |
informationQuality: | Highest (7) |
eventType: | humanPresenceOnRoad (12) |
subCausedCode: | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspar, F.; Guerreiro, V.; Loureiro, P.; Costa, P.; Mendes, S.; Rabadão, C. Prototype to Increase Crosswalk Safety by Integrating Computer Vision with ITS-G5 Technologies. Information 2020, 11, 503. https://doi.org/10.3390/info11110503
Gaspar F, Guerreiro V, Loureiro P, Costa P, Mendes S, Rabadão C. Prototype to Increase Crosswalk Safety by Integrating Computer Vision with ITS-G5 Technologies. Information. 2020; 11(11):503. https://doi.org/10.3390/info11110503
Chicago/Turabian StyleGaspar, Francisco, Vitor Guerreiro, Paulo Loureiro, Paulo Costa, Sílvio Mendes, and Carlos Rabadão. 2020. "Prototype to Increase Crosswalk Safety by Integrating Computer Vision with ITS-G5 Technologies" Information 11, no. 11: 503. https://doi.org/10.3390/info11110503
APA StyleGaspar, F., Guerreiro, V., Loureiro, P., Costa, P., Mendes, S., & Rabadão, C. (2020). Prototype to Increase Crosswalk Safety by Integrating Computer Vision with ITS-G5 Technologies. Information, 11(11), 503. https://doi.org/10.3390/info11110503