Models for Internet of Things Environments—A Survey
Abstract
:1. Introduction
2. Background
2.1. Internet of Things and IoT Environment Models
2.2. Ontology Models
3. Models for IoT Environments
<?xml version="1.0" encoding="UTF-8"?> <homeML> <inhabitantDetails> <inhabitantID>454542</inhabitantID> </inhabitantDetails> <location> <locationID>4754</locationID> <locationDescription>Living Room</locationDescription> <locationDevice> <ldeviceID>454584</ldeviceID> <deviceType>Temp Sensor</deviceType> <units>Celsius<units> <deviceDescription>Temperature Sensor Living Room</deviceDescription> <deviceLocation> <xPos>10.5</xPos> <yPos>12.3</yPos> <zPos>54.2</zPos> </deviceLocation> <event> <eventID>1</eventID> <timeStamp>11:20:50, 9/24/11</timeStamp> <data>23.1</data> </event> <event> <eventID>2</eventID> <timeStamp>11:21:44, 9/24/11</timeStamp> <data>23.2</data> </event> </locationDevice> </location> <annotationDetails> <annotationID>4654654</annotationID> <IDevice>454584</IDevice> <startTimeStamp>11:20:50, 9/24/11</startTimeStamp> <endTimeStamp>11:21:44, 9/24/11</endTimeStamp> </annotationDetails> </homeML>
[ { "n": "urn:dev:ow:10e2073a01080063", "u": "Cel", "v": 23.1 } ]
<sml:PhysicalComponent gml:id="temperature_sensor" ... > <gml:description>Temperature sensor</gml:description> <gml:identifier codeSpace="uid">1</gml:identifier> <!-- Observed Property = Output --> <sml:outputs> <sml:OutputList> <sml:output name="temp"> <swe:Quantity definition= "http://sweet.jpl.nasa.gov/2.2/quanTemperature.owl#Temperature"> <swe:label>Air Temperature</swe:label> <swe:uom code="Cel"/> </swe:Quantity> </sml:output> </sml:OutputList> </sml:outputs> <!-- Sensor Location --> <sml:position> <gml:Point gml:id="stationLocation" srsName="http://www.opengis.net/def/crs/EPSG/0/4326"> <gml:coordinates>47.8 88.56</gml:coordinates> </gml:Point> </sml:position> </sml:PhysicalComponent>
{ "data_type": "float", "hardware_type": "temperature_sensor", "location": { "location_type": "city_name", "location_value": "Stuttgart" }, "message_format": "JSON", "message_structure": { "metamodel_type": "JSON_schema", "metamodel":"{ "title": "provider_schema", "type": "object", "properties": { "value": {"type": "float"}, "timestamp": {"type": "integer"}, "time_up": {"type": "string"} }, "required": ["value", "timestamp"]}" }, "middleware_endpoint": "test.mosquitto.org:1883", "owner": "city_of_stuttgart", "path": "/temperature/celsius", "protocol": "MQTT", "topic_type": "subscription" }
4. Criteria-Based Comparison
4.1. Criterion ➊: Maturity (Standard/Non-Standard)
4.2. Criterion ➋: Support of Hierarchies
4.3. Criterion ➌: Availability and Community Support
4.4. Criterion ➍: Implementation
4.5. Criterion ➎: Geolocation Support
5. Related Work
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Vermesan, O.; Friess, P. Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems; River Publishers: Aalborg, Denmark, 2013. [Google Scholar]
- Franco da Silva, A.C.; Breitenbücher, U.; Hirmer, P.; Képes, K.; Kopp, O.; Leymann, F.; Mitschang, B.; Steinke, R. Internet of Things Out of the Box: Using TOSCA for Automating the Deployment of IoT Environments. In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER). SciTePress Digital Library, Porto, Portugal, 24–26 April 2017; ScitePress: Setubal, Portugal, 2017; pp. 358–367. [Google Scholar]
- Strang, T.; Linnhoff-Popien, C. A Context Modeling Survey. In Proceedings of the Workshop on Advanced Context Modelling, Reasoning and Management, UbiComp, Maui, HI, USA, 11–15 September 2004; Volume 4, pp. 34–41. [Google Scholar]
- Glaessgen, E.; Stargel, D. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Boschert, S.; Rosen, R. Digital Twin—The Simulation Aspect. In Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and their Designers; Springer International Publishing: New York, NY, USA, 2016; pp. 59–74. [Google Scholar]
- OGC. Sensor Model Language (SensorML). 2014. Available online: http://www.opengeospatial.org/standards/sensorml (accessed on 17 October 2020).
- Bermudez-Edo, M.; Elsaleh, T.; Barnaghi, P.; Taylor, K. IoT-Lite: A Lightweight Semantic Model for the Internet of Things. In Proceedings of the Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences, Toulouse, France, 18–21 July 2016; IEEE: New York, NY, USA, 2016; pp. 90–97. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Franco da Silva, A.C.; Hirmer, P.; Mitschang, B. Model-based Operator Placement for Data Processing in IoT Environments. In Proceedings of the IEEE International Conference on Smart Computing (SMARTCOMP), Washington, DC, USA, 12–15 June 2019; IEEE: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Guarino, N.; Oberle, D.; Staab, S. What Is an Ontology? In Handbook on Ontologies; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–17. [Google Scholar]
- Hirmer, P.; Wieland, M.; Breitenbücher, U.; Mitschang, B. Automated Sensor Registration, Binding and Sensor Data Provisioning. In Proceedings of the CAiSE’16 Forum, at the 28th International Conference on Advanced Information Systems Engineering, CEUR-WS.org, Ljubljana, Slovenia, 13–17 June 2016; Volume 1612, pp. 81–88. [Google Scholar]
- SmartOrchestra Consortium. SmartOrchestra Research Project. 2016. Available online: http://smartorchestra.de/en (accessed on 17 October 2020).
- IC4F Consortium. IC4F Research Project. 2017. Available online: https://www.ic4f.de (accessed on 17 October 2020).
- Nugent, C.D.; Finlay, D.D.; Davies, R.J.; Wang, H.Y.; Zheng, H.; Hallberg, J.; Synnes, K.; Mulvenna, M.D. homeML—An Open Standard for the Exchange of Data Within Smart Environments. In Pervasive Computing for Quality of Life Enhancement: 5th International Conference on Smart Homes and Health Telematics, ICOST 2007, Nara, Japan, June 21–23, 2007. Proceedings; Chapter Pervasive Computing for Quality of Life Enhancement; Springer: Berlin/Heidelberg, Germany, 2007; pp. 121–129. [Google Scholar]
- McDonald, H.; Nugent, C.; Hallberg, J.; Finlay, D.; Moore, G.; Synnes, K. The homeML suite: Shareable datasets for smart home environments. Health Technol. 2013, 3, 177–193. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats. Standard. 1998. Available online: standards.ieee.org/standard/1451_2-1997.html (accessed on 17 October 2020).
- Song, E.Y.; Burns, M.; Pandey, A.; Roth, T. IEEE 1451 Smart Sensor Digital Twin Federation for IoT/CPS Research. In Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11–13 March 2019; pp. 1–6. [Google Scholar]
- Futek Advanced Sensor Technology, Inc. Transducer Electronic Datasheet—Manual and Programming Guide. Available online: www.futek.com (accessed on 17 October 2020).
- IEEE. ISO/IEC/IEEE Information technology—Smart transducer interface for sensors and actuators—Common functions, communication protocols, and Transducer Electronic Data Sheet (TEDS) formats. ISO/IEC/IEEE 21450:2010(E) 2010, 1–350. [Google Scholar] [CrossRef]
- Conway, P.; Heffernan, D.; O’Mara, B.; Burton, P.; Miao, T. IEEE 1451.2: An Interpretation and Example Implementation. In Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference (IMTC), Baltimore, MD, USA, 1–4 May 2000; IEEE: New York, NY, USA, 2000; Volume 2, pp. 535–540. [Google Scholar]
- Song, Y.; Lee, K.B. An implementation of the Proposed IEEE 1451.0 and 1451.5 Standards. In Proceedings of the Sensors Applications Symposium, Houston, TX, USA, 7–9 February 2006. [Google Scholar]
- Cherian, A.; Wobschall, D.; Sheikholeslami, M. An IoT Interface for Industrial Analog Sensor with IEEE 21451 Protocol. In Proceedings of the IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; IEEE: New York, NY, USA, 2017; pp. 1–5. [Google Scholar]
- Bermudez-Edo, M.; Elsaleh, T.; Barnaghi, P.; Taylor, K. IoT-Lite: A lightweight semantic model for the internet of things and its use with dynamic semantics. Pers. Ubiquitous Comput. 2017, 21, 475–487. [Google Scholar] [CrossRef]
- Elsaleh, T.; Bermudez-Edo, M.; Enshaeifar, S.; Acton, S.T.; Rezvani, R.; Barnaghi, P. IoT-Stream: A Lightweight Ontology for Internet of Things Data Streams. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar]
- Elsaleh, T.; Enshaeifar, S.; Rezvani, R.; Acton, S.T.; Janeiko, V.; Bermudez-Edo, M. IoT-Stream: A Lightweight Ontology for Internet of Things Data Streams and Its Use with Data Analytics and Event Detection Services. Sensors 2020, 20, 953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janowicz, K.; Haller, A.; Cox, S.J.; Le Phuoc, D.; Lefrançois, M. SOSA: A lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 2019, 56, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Bui, N.; De Loof, J.; Magerkurth, C.; Nettsträter, A.; Stefa, J.; Walewski, J.W. IoT Reference Model. In Enabling Things to Talk: Designing IoT solutions with the IoT Architectural Reference Model; Springer: Berlin/Heidelberg, Germany, 2013; Chapter 7; pp. 113–162. [Google Scholar]
- Open Connectivity Foundation. IoT Management and Control. 2013. Available online: https://openconnectivity.org/developer/specifications/upnp-resources/upnp/iot-management-and-control1-2 (accessed on 17 October 2020).
- Open Connectivity Foundation. IoTivity. 2017. Available online: https://iotivity.org (accessed on 17 October 2020).
- Alaya, M.B.; Medjiah, S.; Monteil, T.; Drira, K. Toward Semantic Interoperability in oneM2M Architecture. IEEE Commun. Mag. 2015, 53, 35–41. [Google Scholar] [CrossRef]
- Dürr, F.; Hönle, N.; Nicklas, D.; Becker, C.; Rothermel, K. Nexus—A Platform for Context-Aware Applications; Jörg, R., Ed.; Gesellschaft für Informatik (GI): Hagen, Germany, 24 June 2004; Volume 1, pp. 15–18. [Google Scholar]
- Nicklas, D.; Schwarz, T.; Mitschang, B. A Schema-Based Approach to Enable Data Integration on the Fly. Int. J. Coop. Inf. Syst. 2017, 26, 1650010. [Google Scholar] [CrossRef]
- oneM2M Partners. oneM2M Base Ontology. 2018. Available online: http://www.onem2m.org/technical/latest-drafts (accessed on 17 October 2020).
- OPC Foundation. OPC Unified Architecture Specification. Part 5: Information Model, 2017. Standard. Available online: https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-5-information-model (accessed on 17 October 2020).
- Grüner, S.; Pfrommer, J.; Palm, F. RESTful Industrial Communication With OPC UA. IEEE Trans. Ind. Inform. 2016, 12, 1832–1841. [Google Scholar] [CrossRef]
- Jennings, C.; Arkko, J.; Shelby, Z. Media Types for Sensor Markup Language (SENML). 2012. Available online: https://tools.ietf.org/html/draft-jennings-senml-10 (accessed on 17 October 2020).
- Jennings, C.; Shelby, Z.; Arkko, J.; Keranen, A.; Bormann, C. Sensor Measurement Lists (SenML), 2018, Standard. Available online: https://tools.ietf.org/html/rfc8428 (accessed on 17 October 2020).
- Su, X.; Zhang, H.; Riekki, J.; Keränen, A.; Nurminen, J.K.; Du, L. Connecting IoT Sensors to Knowledge-based Systems by Transforming SenML to RDF. Procedia Comput. Sci. 2014, 32, 215–222. [Google Scholar] [CrossRef]
- Kaivonen, S.; Ngai, E.C.H. Real-time air pollution monitoring with sensors on city bus. Digit. Commun. Netw. 2020, 6, 23–30. [Google Scholar] [CrossRef]
- Compton, M.; Barnaghi, P.; Bermudez, L.; García-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.; Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 2012, 17, 25–32. [Google Scholar] [CrossRef]
- W3C. IoT-Lite Ontology. 2015. Available online: https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126 (accessed on 17 October 2020).
- W3C. Semantic Sensor Network Ontology. 2005. Available online: https://www.w3.org/2005/Incubator/ssn/ssnx/ssn (accessed on 17 October 2020).
- Franco da Silva, A.C.; Hirmer, P.; Breitenbücher, U.; Kopp, O.; Mitschang, B. TDLIoT: A Topic Description Language for the Internet of Things. In Proceedings of the International Conference on Web Engineering (ICWE), Cáceres, Spain, 5–8 June 2018; Springer International Publishing: New York, NY, USA, 2018; pp. 333–348. [Google Scholar]
- Eclipse. Vorto. 2017. Available online: https://www.eclipse.org/vorto (accessed on 17 October 2020).
- March, S.T.; Scudder, G.D. Predictive maintenance: Strategic use of IT in manufacturing organizations. Inf. Syst. Front. 2017, 21, 1–15. [Google Scholar] [CrossRef]
- Wobschall, D. An implementation of IEEE 1451 NCAP for Internet access of serial port-based sensors. In Proceedings of the 2nd ISA/IEEE Sensors for Industry Conference, Houston, TX, USA, 19–21 November 2002; pp. 157–160. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Compton, M.; Henson, C.; Lefort, L.; Neuhaus, H.; Sheth, A. A Survey of the Semantic Specification of Sensors. In Proceedings of the 2nd International Conference on Semantic Sensor Networks (SSN’09), Washington DC, USA, 26 October 2009; Volume 522, pp. 17–32. [Google Scholar]
- Avancha, S.; Patel, C.; Joshi, A. Ontology-driven adaptive sensor networks. In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous), Boston, MA, USA, 22–26 August 2004; pp. 194–202. [Google Scholar]
- Matheus, C.J.; Tribble, D.; Kokar, M.M.; Ceruti, M.G.; McGirr, S.C. Towards a Formal Pedigree Ontology for Level-One Sensor Fusion; Technical Report; Versatile Information Systems Inc.: Riverside, CA, USA, 2006. [Google Scholar]
- Eid, M.; Liscano, R.; el Saddik, A. A Universal Ontology for Sensor Networks Data. In Proceedings of the 2007 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Ostuni, Italy, 27–29 June 2007; pp. 59–62. [Google Scholar]
- Gyrard, A.; Bonnet, C.; Boudaoud, K.; Serrano, M. LOV4IoT: A Second Life for Ontology-Based Domain Knowledge to Build Semantic Web of Things Applications. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), Vienna, Austria, 22–24 August 2016; pp. 254–261. [Google Scholar]
- Chen, C.; Helal, S. Sifting Through the Jungle of Sensor Standards. IEEE Pervasive Comput. 2008, 7, 84–88. [Google Scholar] [CrossRef]
- Darmois, E.; Elloumi, O.; Guillemin, P.; Moretto, P. IoT Standards–State-of-the-Art Analysis. In Digitising the Industry Internet of Things Connecting the Physical, Digital and Virtual Worlds; IERC: Cork, Ireland, 2012. [Google Scholar]
- Grangel-González, I.; Baptista, P.; Halilaj, L.; Lohmann, S.; Vidal, M.E.; Mader, C.; Auer, S. The Industry 4.0 Standards Landscape from a Semantic Integration Perspective. In Proceedings of the IEEE 22nd International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017. [Google Scholar]
- ZigBee Alliance. Dotdot. 2019. Available online: https://zigbeealliance.org/solution/dotdot (accessed on 17 October 2020).
TEDS Structure | Property | Value | Units |
---|---|---|---|
Manufacturer ID | Futek Advanced Sensor Technology, Inc. | - | |
Model number | MP | - | |
Basic TEDS | Version letter | P | - |
(64 bits) | Version number | 300 | - |
Serial number | 123456 | - | |
Template ID | 30 | - | |
Physical Measurand (Units) | psi | - | |
Minimum physical value | 0 | psi | |
Maximum physical value | 50 | psi | |
Transducer electrical signal type | Voltage sensor | - | |
Full-scale electrical value precision | 0-10V | - | |
Minimum voltage output | 0 | V | |
Maximum voltage output | 10 | V | |
Mapping method | Linear | - | |
TEDS template: | AC or DC coupling | DC | - |
High-level | Sensor output impedance | 1 | Ohms |
Voltage output | Response time | 0.001 | s |
(154 to 253 bits) | Excitation/power requirements | Power supply/excitation source | - |
Power supply level, nominal | 24 | V | |
Power supply level, minimum | 14 | V | |
Power supply level, maximum | 30 | V | |
Power supply type | DC | - | |
Maximum current at nominal power level | 0.001 | A | |
Calibration date | 11/3/2016 | - | |
Calibration initials | NWH | - | |
Calibration period | 365 | days | |
Measurement location ID | 1 | - | |
User data | - | - |
Model | ➊ | ➋ | ➌ | ➍ | ➎ | Year | Remarks |
---|---|---|---|---|---|---|---|
homeML | non-standard | ✗ | ✗ | ✗ | ✓ | 2007 | Designed for smart homes [14,15] |
IEEE 1451.2 * | standard | ✗ | ✓ | ✓ | ✗ | 1998 | Focuses on sensors [16,17,19] |
IoT ARM | non-standard | ✓ | ✗ | ✗ | ✓ | 2013 | Generic reference model [27] |
IoT-Lite | submitted | ✓ | ✓ | ✓ | ✓ | 2016 | Uses SSN ontology [7,23,41] |
IoT-Stream | non-standard | ✓ | ✓ | ✓ | ✓ | 2019 | Uses SSN ontology [24,25] |
IoT MC * | standard | ✓ | ✓ | ✓ | ✗ | 2013 | Also known as IoTivity [28,29] |
IoT-O | standard ext. | ✓ | ✗ | ✗ | ✗ | 2015 | Uses SSN ontology [30] |
Nexus AWM * | non-standard | ✓ | ✗ | ✓ | ✓ | 2004 | Focuses on geo-localization [31,32] |
oneM2M base | standard | ✓ | ✓ | ✓ | ✓ | 2018 | Focuses on services of IoT devices [33] |
OPC UA * | standard | ✓ | ✓ | ✓ | ✗ | 2016 | Established in smart factories [34,35] |
SenML * | standard | ✗ | ✓ | ✓ | ✓ | 2012 | Focus on sensors and sensor values [36,37] |
SensorML | standard | ✗ | ✓ | ✓ | ✓ | 2014 | Supports processes [6] |
SSN | standard | ✓ | ✓ | ✓ | ✓ | 2005 | Well-established IoT ontology [26,42] |
TDLIoT * | non-standard | ✗ | ✓ | ✓ | ✓ | 2018 | Research prototype [43] |
Vorto * | non-standard | ✗ | ✓ | ✓ | ✗ | 2017 | Provided as programming language [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco da Silva, A.C.; Hirmer, P. Models for Internet of Things Environments—A Survey. Information 2020, 11, 487. https://doi.org/10.3390/info11100487
Franco da Silva AC, Hirmer P. Models for Internet of Things Environments—A Survey. Information. 2020; 11(10):487. https://doi.org/10.3390/info11100487
Chicago/Turabian StyleFranco da Silva, Ana Cristina, and Pascal Hirmer. 2020. "Models for Internet of Things Environments—A Survey" Information 11, no. 10: 487. https://doi.org/10.3390/info11100487
APA StyleFranco da Silva, A. C., & Hirmer, P. (2020). Models for Internet of Things Environments—A Survey. Information, 11(10), 487. https://doi.org/10.3390/info11100487