MDS Self-Dual Codes and Antiorthogonal Matrices over Galois Rings
Abstract
:1. Introduction
2. Preliminaries
2.1. Galois Rings
- is a ring automorphism of .
- fixes every element of .
- is of order r and generates the cyclic Galois group of over .
2.2. Linear Codes over
2.3. MDS Codes
2.4. Self-Dual Codes and Building-Up Construction
2.5. MDS Self-Dual Codes
3. MDS Self-Dual Codes over Galois Rings
- : , , .
- : , , .
- : , , .
- : , , .
- : , , .
- : , , .
4. Antiorthogonal Matrices over Galois Rings
4.1. Review of Previous Research
4.2. Nonexistence of a Antiorthogonal Matrix U over , and Odd r
Funding
Acknowledgments
Conflicts of Interest
References
- Rains, E.; Sloane, N.J.A. Self-dual codes. In Handbook of Coding Theory; Pless, V.S., Huffman, W.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Grassl, M.; Gulliver, T.A. On Self-Dual MDS Codes. In Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 1954–1957. [Google Scholar]
- Lee, H.; Lee, Y. Construction of self-dual codes over finite rings . J. Comb. Theory A 2008, 115, 407–422. [Google Scholar]
- Dougherty, S.T.; Kim, J.-L.; Kulosman, H. MDS codes over finite principal ideal rings. Des. Codes Cryptogr. 2009, 50, 77–92. [Google Scholar] [CrossRef]
- Kim, J.-L.; Lee, Y. Construction of MDS self-dual codes over Galois rings. Des. Codes Cryptogr. 2007, 45, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-L. New extremal self-dual codes of lengths 36, 38 and 58. IEEE Trans. Inf. Theory 2001, 47, 386–393. [Google Scholar]
- Kim, J.-L.; Lee, Y. An efficient construction of self-dual codes. Bull. Korean Math. Soc. 2015, 52, 915–923. [Google Scholar] [CrossRef]
- Kim, J.-L.; Lee, Y. An efficient construction of self-dual codes. arXiv 2012, arXiv:1201.5689. [Google Scholar] [CrossRef]
- Han, S. A method for costructing self-dual codes over . Des. Codes Cryptogr. 2015, 75, 253–262. [Google Scholar] [CrossRef]
- Massey, J.L. Orthogonal, antiorthogonal and self-orthogonal matrices and their codes. Commun. Coding 1998, 2, 1–7. [Google Scholar]
- Massey, J.L. On Antiorthogonal Matrices and Their Codes. In Proceedings of the 1998 IEEE International Symposium on Information Theory, Cambridge, MA, USA, 16–21 August 1998; p. 64. [Google Scholar]
- Han, S. Self-dual codes and antiorthogonal matrices over Galois rings. J. Chungcheong Math. Soc. 2018, 31, 269–280. [Google Scholar]
- Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symb. Comput. 1997, 24, 235–265. [Google Scholar] [CrossRef]
- Wan, Z.-X. Finite Fields and Galois Rings; World Scientific Publishing: Hackensack, NJ, USA, 2012. [Google Scholar]
- Norton, G.H.; Salagean, A. On the structure of linear and cyclic codes over a finite chain ring. Appl. Algebra Eng. Commun. Comput. 2000, 10, 489–506. [Google Scholar] [CrossRef]
- Norton, G.H.; Salagean, A. On the Hamming distance of linear codes over a finite chain ring. IEEE Trans. Inf. Theory 2000, 46, 1060–1067. [Google Scholar] [CrossRef] [Green Version]
- MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes; Elsevier: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Dougherty, S.T.; Shiromoto, K. MDR Codes over . IEEE Trans. Inf. Theory 2000, 46, 265–269. [Google Scholar] [CrossRef]
- Han, S. On the problem of the existence of a square matrix U such that UUT = −I over . Information 2017, 8, 80. [Google Scholar] [CrossRef]
p | m | Length n |
---|---|---|
3 | 2 | |
3 | ||
4 | ||
5 | 2 | |
3 | ||
7 | 2 | |
11 | 2 |
p | m | r | : SQ | : TSQ | Existence of U |
---|---|---|---|---|---|
Yes | ∃ | ||||
Even | Yes | ∃ | |||
Odd | No | Yes | ∃⇔a is even | ||
1 | Yes | ∃ | |||
1 | No | No | ∃⇔ | ||
2 | No | Yes | ∃⇔a is even | ||
or a is odd ⇒ ∄ | |||||
No | No | ⇒∃ | |||
⇒ ? |
p | m | Length n |
---|---|---|
3 | ||
7 | ||
11 | 2 | |
19 | 2 | |
23 | 2 | |
31 | 2 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S. MDS Self-Dual Codes and Antiorthogonal Matrices over Galois Rings. Information 2019, 10, 153. https://doi.org/10.3390/info10040153
Han S. MDS Self-Dual Codes and Antiorthogonal Matrices over Galois Rings. Information. 2019; 10(4):153. https://doi.org/10.3390/info10040153
Chicago/Turabian StyleHan, Sunghyu. 2019. "MDS Self-Dual Codes and Antiorthogonal Matrices over Galois Rings" Information 10, no. 4: 153. https://doi.org/10.3390/info10040153
APA StyleHan, S. (2019). MDS Self-Dual Codes and Antiorthogonal Matrices over Galois Rings. Information, 10(4), 153. https://doi.org/10.3390/info10040153