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Abstract: In this study, we explore maximum distance separable (MDS) self-dual codes over Galois rings
GR(pm, r) with p ≡ −1 (mod 4) and odd r. Using the building-up construction, we construct MDS
self-dual codes of length four and eight over GR(pm, 3) with (p = 3 and m = 2, 3, 4, 5, 6), (p = 7 and
m = 2, 3), (p = 11 and m = 2), (p = 19 and m = 2), (p = 23 and m = 2), and (p = 31 and m = 2).
In the building-up construction, it is important to determine the existence of a square matrix U such that
UUT = −I, which is called an antiorthogonal matrix. We prove that there is no 2× 2 antiorthogonal
matrix over GR(2m, r) with m ≥ 2 and odd r.
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1. Introduction

In coding theory, the minimum distance is very important because it indicates the ability to perform
error correction on the codes. Therefore, maximum distance separable (MDS) codes have attracted much
attention. However, self-dual codes have also been investigated because they are closely related to other
mathematical structures such as block designs, lattices, modular forms, and sphere packings (see [1]
as an example). Codes that contain both structures, which are called MDS self-dual codes, have been
investigated. MDS self-dual codes have been studied over finite fields (see [2] as an example) and over
finite rings Zpm (see [3] as an example). They have also been studied for Galois rings GR(pm, r). For the
p = 2 case, the codes were investigated in [4], and for p ≡ 1 (mod 4) with any r or p ≡ −1 (mod 4) with
even r, the codes were studied in [5]. To the best of our knowledge, MDS self-dual codes have not yet been
studied for the case p ≡ −1 (mod 4) with odd r, and this case is the focus of our study. Specifically, we
constructed several MDS self-dual codes over GR(pm, 3).

There are several construction methods for self-dual codes. One of the methods is the building-up
construction. The method was first described in [6] and then developed in many papers (see [7] as an
example). We note that the method was considered for GR(pm, r) with p ≡ −1 (mod 4) and odd r in [8].
In this paper, we used the building-up construction method which was described in [9] to construct MDS
self-dual codes. For this method, it is very important to determine the existence of a square matrix U such
that UUT = −I, which is called an antiorthogonal matrix [10,11]. There has been a study aimed at dealing
with this problem [12]. In this study, we performed additional research on this problem.

This paper is organized as follows. In Section 2, we present basic facts regarding Galois rings, linear
codes over GR(pm, r), MDS codes, self-dual codes, and building-up construction. In Section 3, we discuss
MDS self-dual codes over GR(pm, r) with p ≡ −1 (mod 4) and odd r, and we give our computational
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results for those codes. Specifically, we construct MDS self-dual codes of length four and eight over
GR(pm, 3) with (p = 3 and m = 2, 3, 4, 5, 6), (p = 7 and m = 2, 3), (p = 11 and m = 2), (p = 19 and m = 2),
(p = 23 and m = 2), and (p = 31 and m = 2). In Section 4, we review previously reported results showing
the existence of antiorthogonal matrices, and we prove that there is no 2× 2 antiorthogonal matrix over
GR(2m, r) with m ≥ 2 and odd r. All of the computations in this paper were performed using the computer
algebra system Magma [13].

2. Preliminaries

In this section, we present basic facts regarding Galois rings, linear codes over Galois rings GR(pm, r),
MDS codes, self-dual codes, and building-up construction. We start with Galois rings.

2.1. Galois Rings

In this subsection, we present some well-known facts about Galois rings (see [14] as an example).
Let p be a fixed prime and m be a positive integer. First, we consider the following canonical projection

µ : Zpm → Zp (1)

which is defined by
µ(c) = c (mod p). (2)

The map µ can be extended naturally to the following map

µ : Zpm [x]→ Zp[x] (3)

which is defined by

µ(a0x + a1x + · · ·+ anxn) = µ(a0) + µ(a1)x + · · ·+ µ(an)xn. (4)

This extended µ is a ring homomorphism with kernel (p).
Let f (x) be a polynomial in Zpm [x]. Then, f (x) is called basic irreducible if µ( f (x)) is irreducible.

A Galois ring is constructed as
GR(pm, r) = Zpm [x]/( f (x)), (5)

where f (x) is a monic basic irreducible polynomial in Zpm [x] of degree r. The elements of GR(pm, r) are
residue classes of the form

a0 + a1x + · · ·+ ar−1xr−1 + ( f (x)), (6)

where ai ∈ Zpm , (0 ≤ i ≤ r− 1). The ring homomorphism µ induces a ring homomorphism µ

µ : GR(pm, r) = Zpm [x]/( f (x))→ Fpr = Zp[x]/( f (x)) (7)

which is defined by
µ(g(x) + ( f (x))) = µ(g(x)) + (µ( f (x))). (8)

A polynomial h(x) in Zpm [x] is called a basic primitive polynomial if µ(h(x)) is a primitive polynomial.
It is a well-known fact that there is a monic basic primitive polynomial h(x) of degree m over Zpm and
h(x)|(xpr−1 − 1) in Zpm [x]. Let h(x) be a monic basic primitive polynomial in Zpm [x] of degree r. Consider
the following element

ξ = x + (h(x)) ∈ GR(pm, r) = Zpm [x]/(h(x)). (9)
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Then, the order of ξ is pr − 1. Teichmüller representatives are defined as follows.

T = {0, 1, ξ, ξ2, . . . , ξ pr−2}. (10)

Then, every element t ∈ GR(pm, r) can be uniquely represented by the form

t = t0 + pt1 + p2t2 + · · ·+ pm−1tm−1, (11)

where ti ∈ T, (0 ≤ i ≤ m− 1). Using this notation, we define the following map σ

σ : GR(pm, r)→ GR(pm, r) (12)

by
σ(t) = tp

0 + pt1
p + p2t2

p + · · ·+ pm−1tm−1
p. (13)

The following facts are known.

1. σ is a ring automorphism of GR(pm, r).
2. σ fixes every element of Zpm .
3. σ is of order r and generates the cyclic Galois group of GR(pm, r) over Zpm .

2.2. Linear Codes over GR(pm, r)

A linear code C of length n over GR(pm, r) is a submodule of GR(pm, r)n, and the elements in C
are called codewords. The distance d(u, v) between two elements u, v ∈ GR(pm, r)n is the number of
coordinates in which u, v differ. The minimum distance of a code C is the smallest distance between
distinct codewords. The weight of a codeword c = (c1, c2, · · · , cn) in C is the number of nonzero cj.
The minimum weight of C is the smallest nonzero weight of any codeword in C. If C is a linear code,
then the minimum distance and the minimum weight are the same.

A generator matrix for a linear code C over GR(pm, r) is permutation equivalent to the following one
in the standard form [15,16]:

G =


Ik0 A0,1 A0,2 A0,3 · · · A0,m−1 A0,m
0 pIk1 pA1,2 pA1,3 · · · pA1,m−1 pA1,m
0 0 p2 Ik2 p2 A2,3 · · · p2 A2,m−1 p2 A2,m
...

...
...

...
...

...
0 0 0 0 · · · pm−1 Ikm−1 pm−1 Am−1,m

 , (14)

where the columns are grouped into square blocks of sizes k0, k1, . . . , km−1. The rank of C, denoted by
rank(C), is defined to be the number of nonzero rows of its generator matrix G in a standard form.
Therefore rank(C) = ∑m−1

i=0 ki. We call k0 in G the free rank of a code C. If rank(C) = k0, then C is called a
free code. We say C is an [n, k, d] linear code, if the code length is n, the rank of C is k, and the minimum
weight of C is d. In this paper, we assume that all codes are linear unless we state otherwise.

2.3. MDS Codes

It is known (see [17] as an example) that for a (linear or nonlinear) code C of length n over any finite
alphabet A,

d ≤ n− log|A|(|C|) + 1. (15)
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Codes meeting this bound are called MDS codes. Further, if C is a linear code over a ring, then

d ≤ n− rank(C) + 1. (16)

Codes meeting this bound are called maximum distance with respect to rank (MDR) codes [16,18].
The presence of MDR codes does not imply MDS codes. See the following example.

Example 1. Let C be a linear code generated by G = (2) over Z4. Then, n = 1, rank(C) = 1, and d = 1.
Therefore, C is an MDR code. Because log|A|(|C|) = log4 2 = 1

2 , C is not an MDS code.

The following lemma states the necessary and sufficient condition for MDS codes.

Lemma 1. A linear code C is MDS if and only if C is MDR and free.

Proof. (⇒) If C is not free, then log|A|(|C|) < rank(C). Therefore, d ≤ n− rank(C) + 1 < n− log|A|(|C|) +
1, so C should be free, and log|A|(|C|) = rank(C). Thus, C is MDR.
(⇐) Let rank(C) = k. Then, |C| = (pmr)k. Because |A| = pmr, we have log|A|(|C|) = k = rank(C).
Therefore, C is MDS.

The following theorem states that the weight distribution of MDS codes over GR(pm, r) of code length
n is uniquely determined.

Theorem 1 ([16] Theorem 5.10). Let C be an MDS code over GR(pm, r) of code length n and minimum weight d.
For d ≤ w ≤ n, denote by Aw the number of words of weight w in C. Then,

Aw =

(
n
w

) w−d

∑
i=0

(
w
i

)(
pmr(w+1−d−i) − 1

)
. (17)

2.4. Self-Dual Codes and Building-Up Construction

Next, we define the usual inner product: for x, y ∈ GR(pm, r)n,

x · y = x1y1 + · · ·+ xnyn. (18)

For a code C of length n over GR(pm, r), let

C⊥ = {x ∈ GR(pm, r)n ∣∣ x · c = 0, ∀ c ∈ C} (19)

be the dual code of C. If C ⊆ C⊥, we say that C is self-orthogonal, and if C = C⊥, then C is self-dual.
Many construction methods are employed for self-dual codes. Among them, the building-up

construction method has been extensively used. In this study, we use the method for constructing
MDS self-dual codes over Galois rings. In the following theorem, we state the method.

Theorem 2 ([9]). Let R be a finite chain ring, let C0 be a self-dual code over R of length n with k(C0) = k, and
let G0 be a k× n generator matrix for C0. Let a ≥ 1 be an integer and let X be an a× n matrix over R such that
XXT = −I. Let U be an a× a matrix over R such that UUT = −I, and let 0 be an a× a zero matrix. Then,
the matrix

G =

(
I 0 X

−G0XT G0XTU G0

)
(20)
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generates a self-dual code C of length n + 2a over R.

2.5. MDS Self-Dual Codes

In this study, we are interested in MDS self-dual codes that are MDS and self-dual. MDS self-dual
codes over GR(2m, r) were constructed using Reed–Solomon codes [4].

Theorem 3 ([4]). Let R = GR(2m, r), n = 2r − 1(> 2), and m ≥ 1. Then, there exists an MDS self-dual code
over R with parameters [2r, 2r−1, 2r−1 + 1], which is an extended RS code.

Kim and Lee investigated the existence of MDS self-dual codes of length n over GR(pm, r), where
p ≡ 1 (mod 4) with any r or p ≡ −1 (mod 4) with even r [5]. The computational results are summarized
in Table 1. They constructed many MDS self-dual codes over GR(pm, 2).

Table 1. Existence of MDS self-dual codes of length n over GR(pm, 2) [5].

p m Length n

3
2 2, 4, 6, 8

3 2, 4, 6, 8

4 2, 4, 6, 8

5 2 2, 4, 6, 8, 10

3 2, 4, 6, 8, 10

7 2 2, 4, 6, 8, 10

11 2 2, 4, 6, 8, 10, 12

The following theorem is very important in the computation of the minimum distance of a linear
code over GR(pm, r).

Theorem 4 ([16] Corollary 4.3). If C is a free code over GR(pm, r), then d(C) = d(C), where C = {c|c ∈ C} and
c is the image of c under the projection of GR(pm, r)n onto GR(p, r)n, extended coordinatewise from the projection
of GR(pm, r) to its residue field GR(p, r).

3. MDS Self-Dual Codes over Galois Rings

In the previous section, we saw that MDS self-dual codes over GR(pm, r) were studied for p = 2, and
p ≡ 1 (mod 4) with any r or p ≡ −1 (mod 4) with even r. However, to the best of our knowledge, MDS
self-dual codes over GR(pm, r) for p ≡ −1 (mod 4) with odd r has not been extensively studied. In this
section, we study these codes, and we start with the following theorem.

Theorem 5. Let C be a free self-dual code of length n over GR(pm, r) for p ≡ −1 (mod 4) with odd r. Then, n
should be a multiple of four.

Proof. Let G be a generator matrix of C. Because C is free, we assume that

G = [I|U] (21)

where I is the n
2 ×

n
2 identity matrix and UUT = −I, i.e., U is a n

2 ×
n
2 antiorthogonal matrix. From Table 2,

n
2 should be even. Therefore, n should be a multiple of four.
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Table 2. Existence of a× a antiorthogonal matrix U over GR(pm, r).

p m r −1 : SQ −1 : TSQ Existence of U

1 (mod 4) Yes ∃ (a ≥ 1)

−1 (mod 4) Even Yes ∃ (a ≥ 1)

Odd No Yes ∃ ⇔ a is even

1 Yes ∃ (a ≥ 1)

1 No No ∃ ⇔ a = 4t(t ≥ 1)

2 2k(k ≥ 1) No Yes ∃ ⇔ a is even

≥ 2 a = 2 or a is odd⇒ @

2k + 1(k ≥ 1) No No a = 4t(t ≥ 1)⇒ ∃
a = 4t + 2(t ≥ 1)⇒ ?

Corollary 1. Let C be an MDS self-dual code of length n over GR(pm, r) for p ≡ −1 (mod 4) with odd r. Then,
n should be a multiple of four.

Proof. From Lemma 1, C is free. Therefore, the result follows from Theorem 5.

We used the building-up construction in Theorem 2 to construct MDS self-dual codes over GR(pm, 3)
for various ps and ms of length four and eight, respectively. The computation results are summarized in
Table 3. In the following example, we give a detailed explanation for constructing MDS self-dual codes
over GR(32, 3) of length four and eight.

Table 3. Existence of MDS self-dual codes of length n over GR(pm, 3).

p m Length n

3 2, 3, 4, 5, 6 4, 8
7 2, 3 4, 8
11 2 4, 8
19 2 4, 8
23 2 4, 8
31 2 4, 8

Example 2. Let C0 be a self-dual code of length four over GR(32, 3) = Z32 [x]/( f (x)), where f (x) = x3 + 2x + 1,
with generator matrix

G0 =

(
1 0 2 2
0 1 7 2

)
. (22)

The minimum weight of C0 is 3, so C0 is an MDS self-dual code. Let

U =

(
2 2
7 2

)
(23)

and

X =

(
5 ∗ w + 2 6 ∗ w2 + 3 ∗ w + 4 7 ∗ w2 + 3 ∗ w + 6 5 ∗ w2 + 6 ∗ w

4 ∗ w2 + 3 ∗ w + 6 8 ∗ w2 + 1 3 ∗ w + 5 2 ∗ w2 + w + 1

)
, (24)
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where w = x + ( f (x)). Then, UUT = −I and XXT = −I. From the building-up construction in Theorem 2,
we have

G = (G1|G2), (25)

where

G1 =


1 0 0 0
0 1 0 0

3 ∗ w2 + 4 ∗ w + 4 w2 + 7 ∗ w 5 ∗ w2 + 6 ∗ w + 1 w2 + 5 ∗ w + 1
7 ∗ w2 + 8 6 ∗ w2 + 4 ∗ w + 7 7 ∗ w2 + 8 ∗ w + 7 w2 + w + 6

 , (26)

G2 =


5 ∗ w + 2 6 ∗ w2 + 3 ∗ w + 4 7 ∗ w2 + 3 ∗ w + 6 5 ∗ w2 + 6 ∗ w

4 ∗ w2 + 3 ∗ w + 6 8 ∗ w2 + 1 3 ∗ w + 5 2 ∗ w2 + w + 1
1 0 2 2
0 1 7 2

 . (27)

Then, G generates a self-dual code C of length eight over GR(32, 3). The projection of G to its residue field GR(3, 3)
is as follows:

Gproj =


1 0 0 0 v22 1 v2 v15

0 1 0 0 v2 v25 2 v20

v9 v10 v25 v18 1 0 2 2
v12 v9 v18 v10 0 1 1 2

 , (28)

where v = x + ( f (x)) in the residue field GR(3, 3). Let Cproj be the code generated by Gproj over the residue field
GR(3, 3). The minimum weight of Cproj is 5, so the minimum weight of C is also 5 based on Theorem 4. Therefore,
C is an MDS self-dual code.

The codes in Table 3 were constructed in the same way as in Example 2. In the following, we give
f (x), G0, U, and X for each code.

1. p = 3: GR(3m, 3) = Z3m [x]/( f (x)), f (x) = x3 + 2x + 1, w = x + ( f (x)).

• m = 2
G0 =

(
1 0 2 2
0 1 7 2

)
, U =

(
2 2
7 2

)
, (29)

X =
(

5 ∗ w + 2 6 ∗ w2 + 3 ∗ w + 4 7 ∗ w2 + 3 ∗ w + 6 5 ∗ w2 + 6 ∗ w
4 ∗ w2 + 3 ∗ w + 6 8 ∗ w2 + 1 3 ∗ w + 5 2 ∗ w2 + w + 1

)
. (30)

• m = 3
G0 =

(
1 0 1 5
0 1 22 1

)
, U =

(
1 5
22 1

)
, (31)

X =
(

17 ∗ w2 + 16 ∗ w + 4 2 ∗ w2 + 26 ∗ w + 26 17 ∗ w2 + 12 ∗ w + 13 26 ∗ w2 + 2 ∗ w + 1
21 ∗ w2 + 4 ∗ w + 2 18 ∗ w2 + 21 ∗ w + 7 18 ∗ w2 + 8 ∗ w + 11 25 ∗ w2 + 4 ∗ w + 7

)
. (32)

• m = 4
G0 =

(
1 0 1 22
0 1 59 1

)
, U =

(
1 22
59 1

)
, (33)

X =
(

9 ∗ w2 + 50 ∗ w + 78 42 ∗ w2 + 2 ∗ w + 27 58 ∗ w2 + 51 ∗ w + 73 18 ∗ w2 + 20 ∗ w + 4
33 ∗ w2 + 11 ∗ w + 52 4 ∗ w2 + w + 56 6 ∗ w2 + 49 ∗ w + 40 48 ∗ w2 + 70 ∗ w + 14

)
. (34)

• m = 5
G0 =

(
1 0 1 22
0 1 221 1

)
, U =

(
1 22

221 1

)
, (35)

X =
(

197 ∗ w2 + 20 ∗ w + 71 9 ∗ w2 + 191 ∗ w + 165 133 ∗ w2 + 79 ∗ w + 148 222 ∗ w2 + 240 ∗ w + 223
206 ∗ w2 + 37 ∗ w + 162 220 ∗ w2 + 217 ∗ w + 21 142 ∗ w2 + 40 ∗ w + 100 122 ∗ w2 + 219 ∗ w + 36

)
. (36)
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• m = 6
G0 =

(
1 0 1 221
0 1 508 1

)
, U =

(
1 221

508 1

)
, (37)

X =
(

532 ∗ w2 + 633 ∗ w + 634 101 ∗ w2 + 304 ∗ w + 98 159 ∗ w2 + 328 ∗ w + 473 691 ∗ w2 + 120 ∗ w + 516
250 ∗ w2 + 92 ∗ w + 544 379 ∗ w2 + 86 ∗ w + 678 609 ∗ w2 + 624 ∗ w + 203 679 ∗ w2 + 223 ∗ w + 149

)
. (38)

2. p = 7: GR(7m, 3) = Z7m [x]/( f (x)), f (x) = x3 + 6x2 + 4, w = x + ( f (x)).

• m = 2
G0 =

(
1 0 2 17
0 1 32 2

)
, U =

(
2 17
32 2

)
, (39)

X =
(

16 ∗ w2 + 26 ∗ w + 31 18 ∗ w2 + 16 ∗ w + 48 39 ∗ w2 + 22 ∗ w + 12 48 ∗ w2 + 36 ∗ w + 14
37 ∗ w2 + 30 ∗ w + 24 33 ∗ w2 + 13 ∗ w + 22 2 ∗ w2 + 47 ∗ w + 28 33 ∗ w2 + 9 ∗ w + 3

)
. (40)

• m = 3
G0 =

(
1 0 2 32
0 1 311 2

)
, U =

(
2 32

311 2

)
, (41)

X =
(

88 ∗ w2 + 23 ∗ w + 57 199 ∗ w2 + 110 ∗ w + 293 133 ∗ w2 + 221 ∗ w + 235 212 ∗ w2 + 215 ∗ w + 107
183 ∗ w2 + 321 ∗ w + 204 215 ∗ w2 + 237 ∗ w + 53 15 ∗ w2 + 33 ∗ w + 147 219 ∗ w2 + 148 ∗ w + 130

)
. (42)

3. p = 11: GR(112, 3) = Z112 [x]/( f (x)), f (x) = x3 + 2x + 9, w = x + ( f (x)).

G0 =
(

1 0 1 19
0 1 102 1

)
, U =

(
1 19

102 1

)
, (43)

X =
(

87 ∗ w2 + 91 ∗ w + 57 79 ∗ w2 + 92 ∗ w + 40 60 ∗ w2 + 83 ∗ w + 106 20 ∗ w2 + 79 ∗ w + 64
54 ∗ w2 + 68 ∗ w + 30 84 ∗ w2 + 57 ∗ w + 15 36 ∗ w2 + 113 ∗ w + 31 84 ∗ w2 + 37 ∗ w + 59

)
. (44)

4. p = 19: GR(192, 3) = Z192 [x]/( f (x)), f (x) = x3 + 4x + 17, w = x + ( f (x)).

G0 =
(

1 0 1 63
0 1 298 1

)
, U =

(
1 63

298 1

)
, (45)

X =
(

234 ∗ w2 + 90 ∗ w + 14 128 ∗ w2 + 336 ∗ w + 104 224 ∗ w2 + 255 ∗ w + 127 174 ∗ w2 + 184 ∗ w + 247
75 ∗ w2 + 211 ∗ w + 114 51 ∗ w2 + 271 ∗ w + 267 175 ∗ w2 + 188 ∗ w + 56 190 ∗ w2 + 168 ∗ w + 238

)
. (46)

5. p = 23: GR(232, 3) = Z232 [x]/( f (x)), f (x) = x3 + 2x + 18, w = x + ( f (x)).

G0 =
(

1 0 2 169
0 1 360 2

)
, U =

(
2 169

360 2

)
, (47)

X =
(

126 ∗ w2 + 79 ∗ w + 264 417 ∗ w2 + 487 ∗ w + 466 18 ∗ w2 + 280 ∗ w + 299 480 ∗ w2 + 402 ∗ w + 145
249 ∗ w2 + 180 ∗ w + 357 143 ∗ w2 + 484 ∗ w + 133 155 ∗ w2 + 13 ∗ w + 23 82 ∗ w2 + 44 ∗ w + 295

)
. (48)

6. p = 31: GR(312, 3) = Z312 [x]/( f (x)), f (x) = x3 + x + 28, w = x + ( f (x)).

G0 =
(

1 0 4 142
0 1 819 4

)
, U =

(
4 142

819 4

)
, (49)

X =
(

363 ∗ w2 + 303 ∗ w + 765 333 ∗ w2 + 200 ∗ w + 920 446 ∗ w2 + 350 ∗ w + 211 676 ∗ w2 + 391 ∗ w + 806
261 ∗ w2 + 116 ∗ w + 339 300 ∗ w2 + 108 ∗ w + 69 373 ∗ w2 + 251 ∗ w + 922 63 ∗ w2 + 231 ∗ w + 597

)
. (50)

4. Antiorthogonal Matrices over Galois Rings

In the previous section, we described the use of the building-up construction method [9] to construct
MDS self-dual codes. In the construction, it is very important to verify the existence of a square matrix U
such that UUT = −I, which is called an antiorthogonal matrix [10,11]. There has been previous research
on this problem [12]. In this section, we review this study and further investigate this problem.
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4.1. Review of Previous Research

We start with the definition of an antiorthogonal matrix. Massey introduced antiorthogonal matrices
over finite fields.

Definition 1 ([10]). A square matrix U over a finite field F is said to be antiorthogonal if UUT = −I.

He characterized self-dual codes using antiorthogonal matrices.

Theorem 6 ([10]). Let C be a linear code over a finite field F with a generator matrix G = [I|P], where I is the
identity matrix. Then, C is self-dual if and only if P is antiorthogonal.

Using the antiorthogonal matrix, he constructed linear codes with complementary duals (LCD
codes) [10]. Definition 1 and Theorem 6 can be stated for Galois rings instead of finite fields. Therefore,
it is very important to verify the existence of antiorthogonal matrices over Galois rings GR(pm, r).
Han performed a study on the problem [12]. We review the research below.

Suppose that p ≡ 1 (mod 4). Then, −1 is a square. In other words, there is an element α ∈ GR(pm, r)
such that α2 = −1. Let U = αI, where I is the a× a identity matrix for a fixed value a ≥ 1. Then, U is
an antiorthogonal matrix. Therefore, there exists an a× a antiorthogonal matrix U over GR(pm, r) for all
a ≥ 1.

Suppose that p ≡ −1 (mod 4). We consider two cases: r is even and r is odd. First, suppose that r is
even. Then, −1 is a square. From a similar argument to that above, there exists an a× a antiorthogonal
matrix U over GR(pm, r) for all a ≥ 1. Second, suppose that r is odd. Then, −1 is not a square but a
two-square sum. If U is an a× a antiorthogonal matrix, then UUT = −I. Therefore, det(UUT) = det(−I)
and (det U)2 = (−1)a. So, a should be even. Because −1 is a two-square sum, there exist α, β such that
α2 + β2 = −1. Let

U2 =

(
α β

β −α

)
. (51)

Then, U2UT
2 = −I. This proves that there is a 2× 2 antiorthogonal matrix U. For a = 2t, where t ≥ 1, let

Ua =

U2 0
. . .

0 U2

 . (52)

Then, UaUT
a = −I. Therefore, we conclude that there exists an a × a antiorthogonal matrix U over

GR(pm, r) if and only if a is even.
Suppose that p = 2. If m = 1, then −1 = 1. Therefore, −1 is a square. By a similar argument to

that above, there exists an a× a antiorthogonal matrix U over GR(pm, r) for all a ≥ 1. Now, suppose that
m ≥ 2. If r = 1, then −1 is neither a square nor a two-square sum, and it is proven that there exists an
a× a antiorthogonal matrix U over GR(pm, r) if and only if a is a multiple of four, i.e., a = 4t, (t ≥ 1) [19].
Now suppose that r ≥ 2. We consider two cases: r is even and r is odd. First, suppose that r is even. Then,
−1 is not a square but is a two-square sum [12]. From a similar argument to that above, there exists an
a× a antiorthogonal matrix U over GR(pm, r) if and only if a is even.

From the above, the remaining case is that p = 2, m ≥ 2, and r = 2k + 1(k ≥ 1). We know that −1
is not a square. Using a similar argument to that above, we know that if U is an a× a antiorthogonal
matrix, then a should be even. Because Z2m ⊂ GR(pm, r) and there is a 4t× 4t antiorthogonal matrix U
over Z2m , there is an a× a antiorthogonal matrix U over R for all a = 4t, (t ≥ 1). Therefore, our question
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is as follows. The first question is “Is −1 a two-square sum?” The second question is “Is there an a× a
antiorthogonal matrix U over GR(pm, r) for a = 4t + 2, (t ≥ 0)?”

4.2. Nonexistence of a 2× 2 Antiorthogonal Matrix U over GR(pm, r), m ≥ 2 and Odd r

In this subsection, we prove that −1 is not a two-square sum in GR(2m, r) with m ≥ 2 and odd r, and
we then conclude that there is no 2× 2 antiorthogonal matrix U over GR(2m, r) with m ≥ 2 and odd r.
We start with the following lemma.

Lemma 2 ([12]). If −1 is a two-square sum in GR(2m, r), then −1 is a two-square sum in GR(2`, r) for all
1 ≤ ` ≤ m.

Corollary 2. If −1 is not a two-square sum in GR(22, r), then −1 is not a two-square sum in GR(2m, r) for all
m ≥ 2.

The following lemma is the core part of our results.

Lemma 3. Let r be an odd positive integer. Then, −1 is not a two-square sum in GR(22, r).

Proof. Let T = {0, 1, ξ, ξ2, . . . , ξ2r−2} be the Teichmüller representatives in GR(22, r) in Section 2. Then,
every element t ∈ GR(22, r) can be uniquely represented by the form t = t0 + 2t1 for some t0, t1 ∈ T.
Suppose that −1 is a two-square sum in GR(22, r) and a2 + b2 = −1 for some a, b ∈ GR(22, r). Let
a = a0 + 2a1, b = b0 + 2b1 for some a0, a1, b0, b1 ∈ T. Then, a2 + b2 = (a0 + 2a1)

2 + (b0 + 2b1)
2 = a0

2 + b0
2.

Therefore a0
2 + b0

2 = −1. We know that −1 is not a square. Therefore, a0 6= 0 and b0 6= 0. Thus, a0
2 = ξ j

and b0
2 = ξk for some 0 ≤ j, k ≤ 22r−2.

From the above, we have
ξ j + ξk = −1. (53)

Then, 1 + ξ j = −ξk. Therefore, (1 + ξ j)2 − σ(1 + ξ j) = (−ξk)2 − σ(−ξk), where σ is the automorphism of
GR(22, r) in Section 2. We have 1 + 2ξ j + ξ2j − 1− ξ2j = ξ2k + ξ2k and 2ξ j = 2ξ2k. Therefore,

ξ j = ξ2k. (54)

From Equations (53) and (54), we have ξ2k + ξk = −1. Therefore, ξk is a root of the equation x2 + x + 1 = 0.
We applied the map µ in Section 2 to ξk and the equation x2 + x + 1 = 0. Then, we have µ((ξk)2 + (ξk) +

1) = 0 in F2r . Thus, (µ(ξk))2 + (µ(ξk)) + 1 = 0 in F2r . Let θ = µ(ξk). Then, θ is a root of x2 + x + 1 = 0
in F2r . Therefore, F2r contains the splitting field of x2 + x + 1 over F2. In other words, F2r contains F22 .
This means that r should be even. This leads to a contradiction and the result follows.

Now, we state the main results of this subsection.

Theorem 7. Let r be an odd positive integer. Then, −1 is not a two-square sum in GR(2m, r) for all m ≥ 2.

Proof. From Corollary 2 and Lemma 3, we have the result.

Theorem 8. Let r be an odd positive integer. Then, there is no 2× 2 antiorthogonal matrix over GR(2m, r) for all
m ≥ 2.
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Proof. Suppose that there is a 2× 2 antiorthogonal matrix U over GR(2m, r). Let

U =

(
a b
c d

)
. (55)

Then, a2 + b2 = −1. This contradicts Theorem 7. Therefore, we have the result.

In Table 2, we summarize the results so far for the existence of an a× a antiorthogonal matrix U over
GR(pm, r). The only remaining problem is for GR(2m, r), m ≥ 2, r = 2k + 1(k ≥ 1), and a = 4t + 2(t ≥ 1).
We state this as a research problem as follows.

Research Problem: Determine the existence or nonexistence of an a× a matrix U such that UUT = −I
in GR(pm, r), where p = 2, m ≥ 2, r = 2k + 1(k ≥ 1), and a = 4t + 2(t ≥ 1).
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