Nonparametric Hyperbox Granular Computing Classification Algorithms
Abstract
1. Introduction
2. Nonparametric Granular Computing
2.1. Representation of Hyperbox Granule
2.2. Operations between Two Hyperbox Granules
2.3. Novel Distance between Two Hyperbox Granules
2.4. Nonparametric Granular Computing Classification Algorithms
Algorithm 1: Training process |
Input: Training set Output: Hyperbox granule set , the class label corresponding to S1. Initialize the hyperbox granule set , ; S2. ; S3. Select the samples with class labels , and generate set ; S4. Initialize the hyperbox granule set ; S5. If , the sample in is selected to construct the corresponding atomic hyperbox granule , is removed from , otherwise ; S6. The sample is selected from and forms the hyperbox granule ; S7. If the join hyperbox granule between and does not include the other class sample, the is replaced by the join hyperbox granule and the samples included in with the class labels i are removed from X, namely, , otherwise and are updated, , ; S8. ; S9. If , output and class label , otherwise . |
Algorithm 2: Testing process |
Input: inputs of unknown datum , the trained hyperbox granule set and class label Output: class label of S1. For ; S2. Compute the distance between and in ; S3. Find the minimal distance ; S4. Find the corresponding class label of the as the label of . |
3. Experiments
3.1. Classification Problems in 2-D Space
3.2. Classification Problems in N-dimensional (N-D) Space
3.3. Classification for Imbalanced Datasets
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ristin, M.; Guillaumin, M.; Gall, J.; Van Gool, L. Incremental Learning of Random Forests for Large-Scale Image Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Garro, B.A.; Rodríguez, K.; Vázquez, R.A. Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl. Soft Comput. 2016, 38, 548–560. [Google Scholar] [CrossRef]
- Yousef, A.; Charkari, N.M. A novel method based on physicochemical properties of amino acids and one class classification algorithm for disease gene identification. J. Biomed. Inform. 2015, 56, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Kaburlasos, V.G.; Kehagias, A. Fuzzy Inference System (FIS) Extensions Based on the Lattice Theory. IEEE Trans. Fuzzy Syst. 2014, 22, 531–546. [Google Scholar] [CrossRef]
- Kaburlasos, V.G.; Pachidis, T.P. A Lattice—Computing ensemble for reasoning based on formal fusion of disparate data types, and an industrial dispensing application. Inform. Fusion 2014, 16, 68–83. [Google Scholar] [CrossRef]
- Kaburlasos, V.G.; Papadakis, S.E.; Papakostas, G.A. Lattice Computing Extension of the FAM Neural Classifier for Human Facial Expression Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1526–1538. [Google Scholar] [CrossRef] [PubMed]
- Kaburlasos, V.G.; Papakostas, G.A. Learning Distributions of Image Features by Interactive Fuzzy Lattice Reasoning in Pattern Recognition Applications. IEEE Comput. Intell. Mag. 2015, 10, 42–51. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Guo, H.; Liu, C. Interval analysis-based hyperbox granular computing classification algorithms. Iranian J. Fuzzy Sys. 2017, 14, 139–156. [Google Scholar]
- Guo, H.; Wang, W. Granular support vector machine: A review. Artif. Intell. Rev. 2017, 51, 19–32. [Google Scholar] [CrossRef]
- Wang, Q.; Nguyen, T.-T.; Huang, J.Z.; Nguyen, T.T. An efficient random forests algorithm for high dimensional data classification. Adv. Data Anal. Classif. 2018, 12, 953–972. [Google Scholar] [CrossRef]
- Kordos, M.; Rusiecki, A. Reducing noise impact on MLP training—Techniques and algorithms to provide noise-robustness in MLP network training. Soft Comput. 2016, 20, 49–65. [Google Scholar] [CrossRef]
- Zadeh, L.A. Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Comput. 1998, 2, 23–25. [Google Scholar] [CrossRef]
- Yao, Y.; She, Y. Rough set models in multigranulation spaces. Inform. Sci. 2016, 327, 40–56. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, L. A measurement theory view on the granularity of partitions. Inform. Sci. 2012, 213, 1–13. [Google Scholar] [CrossRef]
- Savchenko, A.V. Fast multi-class recognition of piecewise regular objects based on sequential three-way decisions and granular computing. Knowl. Based Syst. 2016, 91, 252–262. [Google Scholar] [CrossRef]
- Kerr-Wilson, J.; Pedrycz, W. Design of rule-based models through information granulation. Exp. Syst. Appl. 2016, 46, 274–285. [Google Scholar] [CrossRef]
- Bortolan, G.; Pedrycz, W. Hyperbox classifiers for arrhythmia classification. Kybernetes 2007, 36, 531–547. [Google Scholar] [CrossRef]
- Hu, X.; Pedrycz, W.; Wang, X. Comparative analysis of logic operators: A perspective of statistical testing and granular computing. Int. J. Approx. Reason. 2015, 66, 73–90. [Google Scholar] [CrossRef]
- Pedrycz, W. Granular fuzzy rule-based architectures: Pursuing analysis and design in the framework of granular computing. Intell. Decis. Tech. 2015, 9, 321–330. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Q.; Wu, K.; Zhu, S.; Zeng, Z. A binary granule representation for uncertainty measures in rough set theory. J. Intell. Fuzzy Syst. 2015, 28, 867–878. [Google Scholar]
- Hońko, P. Association discovery from relational data via granular computing. Inform. Sci. 2013, 234, 136–149. [Google Scholar] [CrossRef]
- Eastwood, M.; Jayne, C. Evaluation of hyperbox neural network learning for classification. Neurocomputing 2014, 133, 249–257. [Google Scholar] [CrossRef]
- Sossa, H.; Guevara, E. Efficient training for dendrite morphological neural networks. Neurocomputing 2014, 131, 132–142. [Google Scholar] [CrossRef]
- Ripley, B.D. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Fernández, A.; Garcia, S.; Del Jesus, M.J.; Herrera, F. A study of the behaviour of linguistic fuzzy rule-based classification systems in the framework of imbalanced data-sets. Fuzzy Sets Syst. 2008, 159, 2378–2398. [Google Scholar] [CrossRef]
- Akbulut, Y.; Şengür, A.; Guo, Y.; Smarandache, F. A Novel Neutrosophic Weighted Extreme Learning Machine for Imbalanced Data Set. Symmetry 2017, 9, 142. [Google Scholar] [CrossRef]
Dataset | #Tr | #Ts | Algorithms | Par. | Ng | TAC | AC | T(s) |
---|---|---|---|---|---|---|---|---|
Spiral | 970 | 194 | NPHBGrC HBGrC | – 0.08 | 58 161 | 100 100 | 99.48 99.48 | 0.6864 1.6380 |
Ripley | 250 | 1000 | NPHBGrC HBGrC | – 0.27 | 32 67 | 100 96 | 90.2 90.1 | 0.0625 0.1159 |
Sensor2 | 4487 | 569 | NPHBGrC HBGrC | – 4 | 4 8 | 100 100 | 99.47 99.47 | 1.0764 1.365 |
Datasets | N | Classes | Samples |
---|---|---|---|
Iris | 4 | 3 | 150 |
Wine | 13 | 3 | 178 |
Phoneme | 5 | 2 | 5404 |
Sensor4 | 4 | 4 | 5456 |
Car | 6 | 5 | 1728 |
Cancer2 | 30 | 2 | 532 |
Semeion | 256 | 10 | 1593 |
Dataset | Algorithms | Testing Accuracy | T(s) | |||
---|---|---|---|---|---|---|
max | mean | min | std | |||
Iris | NPHBGrC | 100 | 98.6667 | 93.3333 | 3.4427 | 0.0265 |
HBGrC | 100 | 97.3333 | 93.3333 | 2.8109 | 1.1560 | |
Wine | NPHBGrC | 100 | 96.8750 | 93.7500 | 3.2940 | 0.0406 |
HBGrC | 100 | 96.2500 | 87.5000 | 4.3700 | 1.0140 | |
Phoneme | NPHBGrC | 91.6512 | 89.8236 | 88.3117 | 1.1098 | 22.4844 |
HBGrC | 87.5696 | 85.9350 | 83.1169 | 1.3704 | 422.3009 | |
Cancer1 | NPHBGrC | 100 | 98.5075 | 95.5224 | 1.7234 | 0.9064 |
HBGrC | 100 | 97.6362 | 92.5373 | 2.6615 | 69.8214 | |
Sensor4 | NPHBGrC | 100 | 99.4551 | 97.4217 | 0.8621 | 1.0670 |
HBGrC | 100 | 99.2157 | 96.6851 | 0.9944 | 71.8509 | |
Car | NPHBGrC | 97.6608 | 91.1445 | 81.8713 | 5.3834 | 8.7532 |
HBGrC | 94.7368 | 85.9593 | 77.7778 | 5.5027 | 1166.5 | |
Cancer2 | NPHBGrC | 100 | 98.0769 | 92.3077 | 2.3985 | 0.4602 |
HBGrC | 100 | 97.4159 | 94.2308 | 1.9107 | 7.5676 | |
Semeion | NPHBGrC | 100 | 98.7512 | 97.4026 | 0.7177 | 6.7127 |
HBGrC | 97.4026 | 94.9881 | 92.2078 | 1.4397 | 533.2691 |
Algorithms | Iris | Wine | Phoneme | Cancer1 | ||||
h-value | p-value | h-value | p-value | h-value | p-value | h-value | p-value | |
NPHBGrC-HBGrC | 0 | 0.3553 | 0 | 0.7222 | 1 | 0 | 0 | 0.3963 |
Algorithms | Sensor4 | Car | Cancer2 | Semeion | ||||
h-value | p-value | h-value | p-value | h-value | p-value | h-value | p-value | |
NPHBGrC-HBGrC | 0 | 0.5722 | 1 | 0.0472 | 0 | 0.5041 | 1 | 0 |
Tests | AC (%) | C1AC (%) | C2AC (%) | G (%) | ||||
---|---|---|---|---|---|---|---|---|
NPHBGrC | HBGrC | NPHBGrC | HBGrC | NPHBGrC | HBGrC | NPHBGrC | HBGrC | |
Test 1 | 78.7879 | 76.4310 | 58.1395 | 54.6512 | 87.2038 | 85.3081 | 75.4026 | 68.2802 |
Test 2 | 74.0741 | 73.7374 | 48.8372 | 44.1860 | 84.3602 | 85.7820 | 72.8299 | 61.5659 |
Test 3 | 76.7677 | 74.0741 | 55.8140 | 54.6512 | 85.3081 | 81.9905 | 74.7530 | 66.9394 |
Test 4 | 74.0741 | 73.4007 | 51.1628 | 47.6744 | 83.4123 | 83.8863 | 74.7382 | 63.2395 |
Test 5 | 76.0135 | 74.6622 | 57.6471 | 48.2353 | 83.4123 | 85.3081 | 73.2875 | 64.1472 |
mean | 75.9435 | 74.4611 | 54.3201 | 49.8796 | 84.7393 | 84.4550 | 74.2023 | 64.8344 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Diao, X.; Guo, H. Nonparametric Hyperbox Granular Computing Classification Algorithms. Information 2019, 10, 76. https://doi.org/10.3390/info10020076
Liu H, Diao X, Guo H. Nonparametric Hyperbox Granular Computing Classification Algorithms. Information. 2019; 10(2):76. https://doi.org/10.3390/info10020076
Chicago/Turabian StyleLiu, Hongbing, Xiaoyu Diao, and Huaping Guo. 2019. "Nonparametric Hyperbox Granular Computing Classification Algorithms" Information 10, no. 2: 76. https://doi.org/10.3390/info10020076
APA StyleLiu, H., Diao, X., & Guo, H. (2019). Nonparametric Hyperbox Granular Computing Classification Algorithms. Information, 10(2), 76. https://doi.org/10.3390/info10020076