Exploring Mobile Terminal Continuance Usage from Customer Value Perspective
Abstract
:1. Introduction
RQ1: Does attitude loyalty depict user psychological states toward the behavior of CUMT in some level of customer value?
RQ2: Does mobility have a moderating role in the behavior of CUMT?
2. Theoretical Background and Hypotheses
2.1. Customer Value
2.2. Mobile Terminal User Value Dimension
2.3. IS Continuance and ECT
2.4. The Roles of PU and Satisfaction
2.5. The Role of Loyalty
2.6. The Moderating Role of Mobility
3. Methods
3.1. Questionnaire Design and Data Collection
3.2. Data Analysis Technique
4. Results
4.1. Measurement Model
4.2. Structural Model for the Base Model
4.3. Structural Model for the Full Model
5. Discussion
5.1. Theoretical Contributions
5.2. Practical Implications
5.3. Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Construct | Source | Items |
---|---|---|
Continuance Usage of a Mobile Terminal | [5] | I often use a mobile terminal to access the Internet. |
I use a mobile terminal to access the Internet many times a day. | ||
I always spend some time on a mobile terminal to access the Internet every day. | ||
I have been using a mobile terminal to access the Internet for a period of time. | ||
Perceived Usefulness | [5] | I think it is helpful for me to use a mobile terminal to access the Internet. |
I think I can easily address the things in work and life by using a mobile terminal to access the Internet. | ||
I think I can more effectively contact others and search for information by using a mobile terminal to access the Internet. | ||
I think it is useful for me to use a mobile terminal to access the Internet. | ||
Satisfaction | [5] | Generally, I feel that using a mobile terminal is satisfactory. |
Generally, I feel that I am willing to use a mobile terminal. | ||
Generally, I feel that using a mobile terminal is enjoyable. | ||
Generally, I feel that using a mobile terminal can meet my needs. | ||
Attitude Loyalty | [58,59] | In the future, I will continue to use a mobile terminal to access the Internet. |
I would recommend using mobile terminals to access the Internet to relatives, friends and others. | ||
I will talk to others about using mobile terminals to access the Internet. | ||
If necessary, I would choose to use a mobile terminal to access the Internet. | ||
Mobility | [32] | I can use mobile terminals to access the Internet from many places, regardless of time. |
I can use mobile terminals to access the Internet without being limited by time and space. | ||
If necessary, I can conveniently use mobile terminals to access the Internet. |
References
- Hoehle, H.; Venkatesh, V. Moblie application usability: Conceptualization and instrument development. MIS Q. 2015, 39, 435–472. [Google Scholar] [CrossRef]
- Meeker, M. Internet trends 2017—Code Conference. Available online: http://www.kpcb.com/internet-trends (accessed on 9 November 2018).
- Hajiheydari, N.; Ashkani, M. Mobile application user behavior in the developing countries: A survey in Iran. Inf. Syst. 2018, 77, 22–33. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, D.; Chen, S.; Wu, X.; Shen, X.-L.; Zhang, X. Understanding users’ switching behavior of mobile instant messaging applications: An empirical study from the perspective of push-pull-mooring framework. Comput. Hum. Behav. 2017, 75, 727–738. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding information systems continuance: An expectation confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Limayem, M.; Cheung, C.M.K. Understanding information systems continuance: The case of Internet-based learning technologies. Inf. Manag. 2008, 45, 227–232. [Google Scholar] [CrossRef]
- Schierz, P.G.; Schilke, O.; Wirtz, B.W. Understanding consumer acceptance of mobile payment services: An empirical analysis. Electron. Commer. Res. Appl. 2010, 9, 209–216. [Google Scholar] [CrossRef]
- Chang, S.E.; Shen, W.C.; Liu, A.Y. Why mobile users trust smartphone social networking services? A PLS-SEM approach. J. Bus. Res. 2016, 69, 4890–4895. [Google Scholar] [CrossRef]
- Hsu, M.-H.; Tien, S.-W.; Lin, H.-C.; Chang, C.-M. Understanding the roles of cultural differences and socio-economic status in social media continuance intention. Inf. Technol. People 2015, 28, 224–241. [Google Scholar] [CrossRef]
- Zhang, C.-B.; Li, Y.-N.; Wu, B.; Li, D.-J. How WeChat can retain users: Roles of network externalities, social interaction ties, and perceived values in building continuance intention. Comput. Hum. Behav. 2017, 69, 284–293. [Google Scholar] [CrossRef]
- Karahanna, E.; Straub, D.W.; Chervany, N.L. Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Q. 1999, 23, 183–213. [Google Scholar] [CrossRef]
- Mouakket, S. Factors influencing continuance intention to use social network sites: The facebook case. Comput. Hum. Behav. 2015, 53, 102–110. [Google Scholar] [CrossRef]
- Gao, L.; Waechter, K.A.; Bai, X. Understanding consumers’ continuance intention towards mobile purchase: A theoretical framework and empirical study—A case of China. Comput. Hum. Behav. 2015, 53, 249–262. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, Y.; Yao, R. An investigation of users’ continuance intention towards mobile banking in China. Inf. Dev. 2016, 32, 20–34. [Google Scholar] [CrossRef]
- Hossain, M.A.; Quaddus, M. The adoption and continued usage intention of RFID: An integrated framework. Inf. Technol. People 2011, 24, 236–256. [Google Scholar] [CrossRef]
- Wang, W.-T.; Ou, W.-M.; Chen, W.-Y. The impact of inertia and user satisfaction on the continuance intentions to use mobile communication applications: A mobile service quality perspective. Int. J. Inf. Manag. 2019, 44, 178–193. [Google Scholar] [CrossRef]
- Woodruff, R.B. Customer value: The next source for competitive advantage. J. Acad. Mark. Sci. 1997, 25, 139–153. [Google Scholar] [CrossRef]
- Sweeney, J.C.; Soutar, G.N. Consumer perceived value: The development of a multiple item scale. J. Retail. 2001, 77, 203–220. [Google Scholar] [CrossRef]
- Andreu, L.; Sanchez, I.; Mele, C. Value co-creation among retailers and consumers: New insights into the furniture market. J. Retail. Consum. Serv. 2010, 17, 241–250. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Fan, H.; Yu, Q.-H. The connotation, characteristis, and typology of customer value. Manag. Sci. China 2005, 18, 71–77. [Google Scholar]
- Bowman, C.; Ambrosini, V. Value Creation Versus Value Capture: Towards a Coherent Definition of Value in Strategy. Br. J. Manag. 2000, 11, 1–15. [Google Scholar] [CrossRef]
- Gan, C. An empirical analysis of factors influencing continuance intention of mobile instant messaging in China. Inf. Dev. 2016, 32, 1109–1119. [Google Scholar] [CrossRef]
- Kim, K.; Hwang, J.; Zo, H. Understanding users’ continuance intention toward smartphone augmented reality applications. Inf. Dev. 2016, 32, 161–174. [Google Scholar] [CrossRef]
- Grönroos, C.; Voima, P. Critical service logic: Making sense of value creation and co-creation. J. Acad. Mark. Sci 2013, 41, 133–150. [Google Scholar] [CrossRef]
- Oliver, R.L. Whence consumer loyalty? J. Mark. 1999, 63, 33–34. [Google Scholar] [CrossRef]
- Chiua, C.-M.; Linb, H.-Y.; Sunc, S.-Y.; Hsuc, M.-H. Understanding customers’ loyalty intentions towards online shopping: An integration of technology acceptance model and fairness theory. Behav. Inf. Technol. 2009, 28, 347–360. [Google Scholar] [CrossRef]
- Hew, J.-J.; Lee, V.-H.; Ooi, K.-B.; Lin, B. Mobile social commerce: The booster for brand loyalty? Comput. Hum. Behav. 2016, 59, 142–154. [Google Scholar] [CrossRef]
- Zhou, T.; Lu, Y. Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience. Comput. Hum. Behav. 2011, 27, 883–889. [Google Scholar] [CrossRef]
- Hernandez-Ortega, B.; Aldas-Manzano, J.; Ruiz-Mafe, C.; Sanz-Blas, S. Perceived value of advanced mobile messaging services: A cross-cultural comparison of Greek and Spanish users. Inf. Technol. People 2017, 30, 324–355. [Google Scholar] [CrossRef]
- McMullan, R.; Gilmore, A. Customer loyalty: An empirical study. Eur. J. Mark. 2008, 42, 1084–1094. [Google Scholar] [CrossRef]
- Flint, D.J.; Woodruff, R.B.; Gardial, S.F. Exploring the phenomenon of customers’ desired value change in a business-to-business context. J. Mark. 2002, 66, 102–117. [Google Scholar] [CrossRef]
- Nikou, S.; Bouwman, H. Ubiquitous use of mobile social network services. Telemat. Inform. 2014, 31, 422–433. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Yang, L. The Important of Enjoyment and Mobility for Continuance with Mobile Data Services. In Proceedings of the Wuhan International Conference on e-Business, Wuhan, China, 1 June 2014. [Google Scholar]
- Bell, P.A.; Greene, T.C.; Fisher, J.D.; Baum, A. Environmental Psychology, 5th ed.; Renmin University of China: Beijing, China, 2009. [Google Scholar]
- Edvardsson, B.; Tronvoll, B.; Gruber, T. Expanding understanding of service exchange and value co-creation: A social construction approach. J. Acad. Mark. Sci. 2011, 39, 327–339. [Google Scholar] [CrossRef]
- Yen, Y.-S.; Wu, F.-S. Predicting the adoption of mobile financial services: The impacts of perceived mobility and personal habit. Comput. Hum. Behav. 2016, 65, 31–42. [Google Scholar] [CrossRef]
- Bhatiasevi, V. An extended UTAUT model to explain the adoption of mobile banking. Inf. Dev. 2016, 32, 799–814. [Google Scholar] [CrossRef]
- Hsiao, C.-H.; Chang, J.-J.; Tang, K.-Y. Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telemat. Inform. 2016, 33, 342–355. [Google Scholar] [CrossRef]
- Lee, Y.; Kwon, O. Intimacy, familiarity and continuance intention: An extended expectation–confirmation model in web-based services. Electron. Commer. Res. Appl. 2011, 10, 342–357. [Google Scholar] [CrossRef]
- Tanl, W.-K.; Lee, P.-W.; Hsu, C.-W. Investigation of temporal dissociation and focused immersion as moderators of satisfaction–continuance intention relationship: Smartphone as an example. Telemat. Inform. 2015, 32, 745–754. [Google Scholar]
- Kim, J.-H.; Lennon, S.J. Information available on a web site: Effects on consumers’ shopping outcomes. J. Fash. Mark. Manag. 2010, 14, 247–262. [Google Scholar] [CrossRef]
- Veríssimo, J.M.C. Enablers and restrictors of mobile banking app use: A fuzzy set qualitative comparative analysis (fsQCA). J. Bus. Res. 2016, 69, 5456–5460. [Google Scholar] [CrossRef]
- Yu, N.; Kong, J. User experience with web browsing on small screens: Experimental investigations of mobile-page interface design and homepage design for news websites. Inf. Sci. 2016, 330, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Hoehle, H.; Aljafari, R.; Venkatesh, V. Leveraging microsoft’s mobile usability guidelines: Conceptualizing and developing scales for mobile application usability. J. Hum.-Comput. Stud. 2016, 89, 35–53. [Google Scholar] [CrossRef]
- Su, Y.S.; Chiang, W.L.; Lee, C.T.J.; Chang, H.C. The effect of flow experience on player loyalty in mobile game application. Comput. Hum. Behav. 2016, 63, 240–248. [Google Scholar] [CrossRef]
- Qi, J.-Y.; Zhou, Y.-P.; Chen, W.-J.; Qu, Q.-X. Are customer satisfaction and customer loyalty drivers of customer lifetime value in mobile data services: A comparative cross-country study. Inform. Technol. Manag. 2012, 13, 281–296. [Google Scholar] [CrossRef]
- Ha, Y.; Im, H. Role of web site design quality in satisfaction and word of mouth generation. J. Serv. Manag. 2012, 23, 79–96. [Google Scholar] [CrossRef]
- Fang, Y.-H. An app a day keeps a customer connected: Explicating loyalty to brands and branded applications through the lens of affordance and service-dominant logic. Inf. Manag. 2018, in press. [Google Scholar] [CrossRef]
- Tseng, F.-C.; Pham, T.T.L.; Cheng, T.C.E.; Teng, C.-I. Enhancing customer loyalty to mobile instant messaging: Perspectives of network effect and self-determination theories. Telemat. Inform. 2018, 35, 1133–1143. [Google Scholar] [CrossRef]
- Bertschek, I.; Niebel, T. Mobile and more productive? Firm-level evidence on the productivity effects of mobile internet use. Telecommun. Policy 2016, 40, 888–898. [Google Scholar] [CrossRef] [Green Version]
- Dovalienė, A.; Piligrimienė, Ž.; Masiulytė, A. Factors influencing customer engagement into mobile applications. Eng. Econ. 2016, 27, 205–212. [Google Scholar] [CrossRef]
- Mallat, N.; Rossi, M.; Tuunainen, V.K.; Oorni, A. The impact of use context on mobile services acceptance: The case of mobile ticketing. Inf. Manag. 2009, 46, 190–195. [Google Scholar] [CrossRef]
- Chaouali, W. Once a user, always a user: Enablers and inhibitors of continuance intention of mobile social networking sites. Telemat. Inform. 2016, 33, 1022–1033. [Google Scholar] [CrossRef]
- Mohammadi, H. Social and individual antecedents of m-learning adoption in Iran. Comput. Hum. Behav. 2015, 49, 191–207. [Google Scholar] [CrossRef]
- Boakye, K.G. Factors influencing mobile data service (MDS) continuance intention: An empirical study. Comput. Hum. Behav. 2015, 50, 125–131. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, Z. Environmental Psychology; China Architecture & Building Press: Beijing, China, 2006. [Google Scholar]
- Berlyne, D.E. Conflict, Arousal, and Curiosity; McGraw-Hill: New York, NY, USA, 1960. [Google Scholar]
- Bayraktar, E.; Tatoglu, E.; Turkyilmaz, A.; Delen, D.; Zaime, S. Measuring the efficiency of customer satisfaction and loyalty for mobile phone brands with DEA. Expert Syst. Appl. 2012, 39, 99–106. [Google Scholar] [CrossRef]
- Chang, C.-C. Exploring mobile application customer loyalty: The moderating effect of use contexts. Telecommun. Policy 2015, 39, 678–690. [Google Scholar] [CrossRef]
- Chong, A.Y.-L.; Chan, F.T.S.; Ooi, K.-B. Predicting consumer decisions to adopt mobile commerce: Cross country empirical examination between China and Malaysia. Decis. Support Syst. 2012, 53, 34–43. [Google Scholar] [CrossRef]
- Kim, S.S.; Son, J.-Y. Out of dedication or constraint? A dual model of post-adoption phenomena and its empirical test in the context of online services. MIS Q. 2009, 33, 49–70. [Google Scholar] [CrossRef]
- Shankara, V.; Smithb, A.K.; Rangaswamy, A. Customer satisfaction and loyalty in online and offline environments. Int. J. Res. Mark. 2003, 20, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Cepeda-Carrion, I.; Leal-Millán, A.G.; Martelo-Landroguez, S.; Leal-Rodriguez, A.L. Absorptive capacity and value in the banking industry: A multiple mediation model. J. Bus. Res. 2016, 69, 1644–1650. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–151. [Google Scholar] [CrossRef]
- Sun, Y.; Fang, Y.; Lim, K.H.; Straub, D. User satisfaction with information technology service delivery: A social capital perspective. Inf. Syst. Res. 2012, 23, 1195–1211. [Google Scholar] [CrossRef]
- Nitzl, C.; Roldan, J.L.; Cepeda, G. Mediation analysis in partial least squares path modeling: Helping researchers discuss more sophisticated models. Ind. Manag. Data Syst. 2016, 116, 1849–1864. [Google Scholar] [CrossRef]
- Brinkhoff, A.; Özer, Ö.; Sargut, G. All You Need Is Trust? An Examination of Inter-organizational Supply Chain Projects. Prod. Oper. Manag. Soc. 2015, 24, 181–200. [Google Scholar] [CrossRef]
- Davis, D.F.; Golicic, S.L. Gaining comparative advantage in supply chain relationships: The mediating role of market-oriented IT competence. J. Acad. Mark. Sci. 2010, 38, 56–70. [Google Scholar] [CrossRef]
- Cepeda, G.; Nitzl, C.; Roldán, J.L. Mediation Analyses in Partial Least Squares Structural Equation Modeling. Guidelines and Empirical Examples. In Partial Least Squares Path Modeling: Basic Concepts, Methodological Issues and Applications; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Dağhan, G.; Akkoyunlu, B. Modeling the continuance usage intention of online learning environments. Comput. Hum. Behav. 2016, 60, 198–211. [Google Scholar] [CrossRef]
- Ozturk, A.B.; Bilgihan, A.; Nusair, K.; Okumus, F. What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. Int. J. Inf. Manag. 2016, 36, 1–10. [Google Scholar] [CrossRef]
Original Dimension | Definition | New Dimension with a Corresponding Description in CU |
---|---|---|
Functional value (price/value for money) | “the utility derived from the product due to the reduction of its perceived short-term and long-term costs” | Functional value (PU is used to depict user perception of usefulness of mobile applications) |
Functional value (performance/ quality) | “the utility derived from the perceived quality and expected performance of the product” | |
Emotional value | “the utility derived from the feelings or affective states that a product generates” | Emotional value (satisfaction is used to depict affective states while users use mobile applications). |
Social value (enhancement of social self-concept) | “the utility derived from the product’s ability to enhance social self-concept” | Social value (attitude loyalty is used to depict user intention/preference of CU or recommending to others to embody value creation between users and social self-concept) |
Demographics Variables | Frequency of Daily Use | Percentage (%) |
---|---|---|
Gender | ||
Male | 169 | 54.3 |
Female | 142 | 45.7 |
Age | ||
<20 | 26 | 8.3 |
20–29 | 162 | 52.1 |
30–39 | 101 | 32.5 |
≥40 | 22 | 7.1 |
Education level | ||
Senior middle school and below | 24 | 7.7 |
Junior college | 40 | 12.9 |
Undergraduate | 217 | 69.8 |
Postgraduate and above | 30 | 9.6 |
Frequency of daily use (times) | ||
<10 | 57 | 18.3 |
10–20 | 94 | 30.2 |
20–30 | 83 | 26.7 |
30–40 | 28 | 9.0 |
40–50 | 16 | 5.2 |
≥50 | 33 | 10.6 |
Total time of daily use | ||
<30 minutes | 24 | 7.8 |
1–2 hours | 90 | 28.9 |
2–3 hours | 76 | 24.4 |
3–4 hours | 43 | 13.8 |
≥4 hours | 78 | 25.1 |
Variables | Items | Cronbach’s α | AVE | CR |
---|---|---|---|---|
Continuance Usage of a Mobile Terminal | 4 | 0.88 | 0.74 | 0.92 |
Perceived Usefulness | 4 | 0.81 | 0.64 | 0.88 |
Satisfaction | 4 | 0.87 | 0.72 | 0.91 |
Attitude Loyalty | 4 | 0.84 | 0.68 | 0.89 |
Mobility | 3 | 0.82 | 0.73 | 0.89 |
CUMT | PU | SAT | LOY | MOB | |
---|---|---|---|---|---|
CUMT1 | 0.89 | 0.55 | 0.47 | 0.54 | 0.35 |
CUMT2 | 0.86 | 0.48 | 0.40 | 0.44 | 0.35 |
CUMT3 | 0.86 | 0.47 | 0.38 | 0.45 | 0.37 |
CUMT4 | 0.82 | 0.56 | 0.50 | 0.50 | 0.35 |
PU1 | 0.43 | 0.79 | 0.43 | 0.40 | 0.24 |
PU2 | 0.40 | 0.75 | 0.40 | 0.27 | 0.18 |
PU3 | 0.54 | 0.78 | 0.40 | 0.37 | 0.27 |
PU4 | 0.55 | 0.88 | 0.52 | 0.45 | 0.34 |
SAT1 | 0.45 | 0.45 | 0.85 | 0.45 | 0.40 |
SAT2 | 0.48 | 0.48 | 0.83 | 0.52 | 0.37 |
SAT3 | 0.43 | 0.46 | 0.89 | 0.48 | 0.39 |
SAT4 | 0.38 | 0.47 | 0.84 | 0.42 | 0.35 |
LOY1 | 0.58 | 0.45 | 0.52 | 0.87 | 0.48 |
LOY2 | 0.35 | 0.34 | 0.43 | 0.77 | 0.42 |
LOY3 | 0.40 | 0.35 | 0.44 | 0.83 | 0.36 |
LOY4 | 0.50 | 0.40 | 0.41 | 0.82 | 0.44 |
MOB1 | 0.42 | 0.33 | 0.41 | 0.47 | 0.89 |
MOB2 | 0.27 | 0.19 | 0.31 | 0.37 | 0.83 |
MOB3 | 0.35 | 0.29 | 0.41 | 0.47 | 0.85 |
Gender | Age | Times | Total | CUMT | PU | SAT | LOY | MOB | |
---|---|---|---|---|---|---|---|---|---|
Gender | NA | ||||||||
Age | 0.02 | NA | |||||||
Times | 0.08 | 0.00 | NA | ||||||
Total | −0.04 | −0.02 | 0.50 | NA | |||||
CUMT | 0.12 | 0.06 | 0.10 | 0.13 | 0.86 | ||||
PU | 0.10 | 0.03 | 0.10 | 0.01 | 0.60 | 0.80 | |||
SAT | 0.06 | 0.11 | −0.01 | −0.03 | 0.51 | 0.55 | 0.85 | ||
LOY | 0.14 | 0.05 | 0.08 | 0.07 | 0.57 | 0.47 | 0.55 | 0.82 | |
MOB | 0.12 | 0.14 | 0.06 | 0.02 | 0.42 | 0.33 | 0.44 | 0.52 | 0.85 |
Path | β(Parameter Estimate) | Significance | |
---|---|---|---|
t-Statistic | p-Value | ||
Perceived usefulness → CUMT | 0.39 | 6.81 | <0.001 |
Perceived usefulness → Satisfaction | 0.55 | 12.08 | <0.001 |
Satisfaction → CUMT | 0.14 | 2.00 | <0.05 |
Satisfaction → Attitude Loyalty | 0.55 | 11.31 | <0.001 |
Satisfaction → CUMT (Total effect) | 0.30 | 4.78 | <0.001 |
Attitude Loyalty → CUMT | 0.29 | 5.19 | <0.001 |
Age → CUMT | 0.02 | 0.42 | >0.05 |
Gender → CUMT | 0.04 | 0.97 | >0.05 |
Times → CUMT | 0.02 | 0.42 | >0.05 |
Total time → CUMT | 0.12 | 2.56 | <0.05 |
Mediation Effect | Point Estimate | Confidence Intervals (Percentile 95%) | Confidence Intervals (Bias-Corrected) |
---|---|---|---|
Total effect c | 0.301 | (0.184, 0.398) * | (0.191, 0.405) * |
indirect effect a × b | 0.162 | (0.111, 0.223) * | (0.108, 0.220) * |
direct effect c’ | 0.140 | (0.013, 0.244) * | (0.024, 0.254) * |
Path | Parameter Estimate | Significance | |
---|---|---|---|
t-Statistic | p-Value | ||
Perceived usefulness → CUMT | 0.37 | 6.50 | <0.001 |
Perceived usefulness → Satisfaction | 0.55 | 12.32 | <0.001 |
Satisfaction → CUMT | 0.14 | 2.09 | <0.05 |
Satisfaction → Attitude Loyalty | 0.55 | 11.27 | <0.001 |
Attitude Loyalty → CUMT | 0.22 | 3.93 | <0.001 |
Mobility → CUMT | 0.09 | 1.60 | >0.05 |
Mobility* Satisfaction → CUMT | −0.12 | 2.71 | <0.01 |
Age → CUMT | 0.04 | 0.20 | >0.05 |
Gender → CUMT | 0.02 | 0.93 | >0.05 |
Times → CUMT | 0.02 | 0.59 | >0.05 |
Total time → CUMT | 0.12 | 2.60 | <0.01 |
R² | f-Statistics | |
---|---|---|
Base model | 0.49 | 0.04 |
Full model (with a moderator) | 0.51 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Yang, X.; Guo, F. Exploring Mobile Terminal Continuance Usage from Customer Value Perspective. Information 2019, 10, 70. https://doi.org/10.3390/info10020070
Li A, Yang X, Guo F. Exploring Mobile Terminal Continuance Usage from Customer Value Perspective. Information. 2019; 10(2):70. https://doi.org/10.3390/info10020070
Chicago/Turabian StyleLi, Aoshuang, Xiaodong Yang, and Feng Guo. 2019. "Exploring Mobile Terminal Continuance Usage from Customer Value Perspective" Information 10, no. 2: 70. https://doi.org/10.3390/info10020070
APA StyleLi, A., Yang, X., & Guo, F. (2019). Exploring Mobile Terminal Continuance Usage from Customer Value Perspective. Information, 10(2), 70. https://doi.org/10.3390/info10020070