Interactive Genetic Algorithm Oriented toward the Novel Design of Traditional Patterns
Abstract
:1. Introduction
2. Related Work
3. The Proposed Method
3.1. Individual’s Fuzzy Interval Fitness
3.2. BP Neural Network User Cognitive Surrogate Model
4. Evolution Design Experiment with Batik Style Patterns
4.1. Individual Codes
4.2. Experimental Environment and Parameters Setting
4.3. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Wu, Z. Integrated risk management and product innovation in China: The moderating role of board of directors. Technovation 2014, 34, 466–476. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Lu, G.; Fei, S.; Zhang, D. Extraction and reuse of pattern configuration based on ontology and shape grammar. J. Zhejiang Univ. (Eng. Sci.) 2018, 52, 461–472. [Google Scholar]
- Knight, T.; Stiny, G. Making grammars: From computing with shapes to computing with things. Des. Stud. 2015, 41, 8–28. [Google Scholar] [CrossRef] [Green Version]
- Chul, M. A study on application of fractal structure on graphic design. Arch. Des. Res. 2004, 17, 1–18. [Google Scholar]
- Yuan, Q.; Lv, J.; Huang, H. Auto-Generation Method of Butterfly Pattern of Batik Based on Fractal Geometry. Int. J. Signal Process. 2016, 9, 269–342. [Google Scholar] [CrossRef]
- Yuan, Q.; Lu, J.; Huang, H.; Pan, W. Research of batik image classification based on support vector machine. Comput. Model. New Technol. 2014, 18, 193–196. [Google Scholar]
- Yuan, Q.; Xu, S.; Jian, L. A new method for retrieving batik shape patterns. J. Assoc. Inf. Sci. Technol. 2018, 69, 578–599. [Google Scholar] [CrossRef]
- Lv, J.; Pan, W.; Liu, Z. Method of Batik Simulation Based on Interpolation Subdivisions. J. Multimedia 2014, 9, 286–293. [Google Scholar] [CrossRef]
- Semnani, D.; Hadjianfar, M.; Aziminia, H.; Sheikhzadeh, M. Jacquard pattern optimizing in weft knitted fabrics via interactive genetic algorithm. Fash. Text. 2014, 1, 1–9. [Google Scholar] [CrossRef]
- Kaliakatsos-Papakostas, M.A.; Floros, A.; Vrahatis, M.N. Interactive music composition driven by feature evolution. Springerplus 2016, 5, 826–864. [Google Scholar] [CrossRef]
- Araújo, A.A.; Paixao, M.; Yeltsin, I.; Dantas, A.; Souza, J. An Architecture based on interactive optimization and machine learning applied to the next release problem. Autom. Softw. Eng. 2017, 24, 623–671. [Google Scholar] [CrossRef]
- Khajeh, M.; Payvandy, P.; Derakhshan, S.J. Fashion set design with an emphasis on fabric composition using the interactive genetic algorithm. Fash. Text. 2016, 3, 1–16. [Google Scholar] [CrossRef]
- Qian, X.; Feng, H.; Zhao, G.; Mei, T. Personalized Recommendation Combining User Interest and Social Circle. IEEE Trans. Knowl. Data Eng. 2014, 26, 1763–1777. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, J.; Yorke-Smith, N. A Novel Recommendation Model Regularized with User Trust and Item Ratings. IEEE Trans. Knowl. Data Eng. 2016, 28, 1607–1620. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Y.; Gong, D.; Zhang, K. Interactive genetic algorithm with CP-nets preference surrogate and application in personalized search. Control Decis. 2015, 30, 1153–1161. [Google Scholar]
- Dou, R.; Zong, C. Application of Interactive Genetic Algorithm based on hesitancy degree in product configuration for customer requirement. Int. J. Comput. Int. Syst. 2014, 72, 74–84. [Google Scholar] [CrossRef]
- Dou, R.; Zong, C.; Li, M. An interactive genetic algorithm with the interval arithmetic based on hesitation and its application to achieve customer collaborative product configuration design. Appl. Soft Comput. 2016, 38, 384–394. [Google Scholar] [CrossRef]
- Kim, J. Design and Implementation of Learning Contents Using Interactive Genetic Algorithms with Modified Mutation. J. Korea Soc. Comput. Inf. 2005, 10, 85–92. [Google Scholar]
- Gong, D.; Chen, J. Interactive genetic algorithms with selecting individuals using elite set. Acta Electron. Sin. 2014, 42, 1538–1544. [Google Scholar]
- Mu, R.; Zeng, X. Collaborative Filtering Recommendation Algorithm Based on Knowledge Graph. Math. Probl. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- Guo, G.; Chen, L. Interactive Genetic Algorithms with Grey Modeling for Individuals Fitness; IEEE Computer Society: Hangzhou, China, 2012; pp. 144–147. [Google Scholar]
- Wu, Y.; Zhang, X.; Yu, H.; Wei, S.; Guo, W. Collaborative filtering recommendation algorithm based on user fuzzy similarity. Intell. Data Anal. 2017, 21, 311–327. [Google Scholar] [CrossRef]
- Guo, G.; Chen, L. An Interactive Genetic Algorithms Based on Maximum Entropy Principle with Individuals’ Fitness Not Assigned by User. Acta Electron. Sin. 2017, 45, 2997–3004. [Google Scholar]
- Sun, X.; Gong, D.; Zhang, W. Interactive genetic algorithms with large population and semi-supervised learning. Appl. Soft Comput. 2012, 12, 3004–3013. [Google Scholar] [CrossRef]
- Sun, X.; Gong, D.; Jin, Y.; Chen, S. A New Surrogate-Assisted Interactive Genetic Algorithm with Weighted Semisupervised Learning. IEEE Trans. Cybern. 2013, 43, 685–698. [Google Scholar] [PubMed]
- Gong, D.; Yang, L.; Sun, X. Applying Knowledge of Users with Similar Preference to Construct Surrogate Models of IGA. Chin. J. Electron. 2015, 24, 555–562. [Google Scholar] [CrossRef]
- Shi, Z.; Han, M. Support vector echo-state machine for chaotic time-series prediction. IEEE Trans. Neural Netw. 2007, 18, 359–372. [Google Scholar] [CrossRef]
- Zhou, A.; Su, J.; Yan, S.; Ouyang, J.; Shi, C.; Yuwang, B. Nonlinear Information Dynamics Model of Synthetic Evaluation on Product Form Aesthetic. J. Mech. Eng. 2018, 54, 150–159. (In Chinese) [Google Scholar] [CrossRef]
- Lin, Y.; Lai, H.; Yeh, C. Neural network models for product image design. In Proceedings of the 8th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, Wellington, New Zealand, 20–25 September 2004; pp. 618–624. [Google Scholar]
- Gong, D.; Sun, X.; Ren, J. Surrogate Models Based on Individual’s Interval Fitness in Interactive Genetic Algorithms. Chin. J. Electron. 2009, 18, 689–694. [Google Scholar]
Evolution Parameters Setting | Surrogate Model Parameters Setting | Remaining Parameters in IGA-BPFIF | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | 0.85 | 0.05 | 12 | 2 | 7 | 3 | 0.01 | 1/2 | 0 | 1/2 | 1/3 | 1/3 | 1/3 |
Algorithm | IGA-T | IGA-IIF | IGA-NNISF | IGA-BPFIF |
---|---|---|---|---|
Optimal Individual | ||||
Fitness | 61 | 68 | 70 | 84 |
Algorithm | Contrast Indicators | 1 | 2 | 3 | 4 | 5 | … | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|
IGA-T | Evolution generations | 27 | 30 | 29 | 30 | 25 | … | 30 | 28 | 29 | 27 |
Number of individuals evaluated by the user | 243 | 270 | 261 | 270 | 225 | … | 270 | 252 | 261 | 243 | |
Number of searched individuals | 243 | 270 | 261 | 270 | 225 | … | 270 | 252 | 261 | 243 | |
IGA-IIF | Evolution generations | 24 | 25 | 30 | 26 | 25 | … | 27 | 24 | 25 | 23 |
Number of individuals evaluated by the user | 216 | 225 | 270 | 234 | 225 | … | 243 | 252 | 270 | 243 | |
Number of searched individuals | 216 | 243 | 270 | 234 | 225 | … | 243 | 252 | 270 | 243 | |
IGA-NNISF | Evolution generations | 25 | 26 | 32 | 25 | 24 | … | 22 | 24 | 35 | 22 |
Number of individuals evaluated by the user | 65 | 66 | 72 | 65 | 64 | … | 62 | 64 | 75 | 62 | |
Number of searched individuals | 225 | 234 | 288 | 225 | 216 | … | 198 | 216 | 315 | 198 | |
IGA-BPFIF | Evolution generations | 8 | 9 | 9 | 10 | 12 | … | 8 | 7 | 10 | 9 |
Number of individuals evaluated by the user | 57 | 51 | 55 | 56 | 62 | … | 52 | 51 | 54 | 57 | |
Number of searched individuals | 243 | 324 | 324 | 405 | 567 | … | 243 | 162 | 405 | 324 |
Algorithm | Evolution Generations | Number of Individuals Evaluated by the User | Number of Searched Individuals | |||
---|---|---|---|---|---|---|
Avg. | Var. | Avg. | Var. | Avg. | Var. | |
IGA-T | 28.12 | 2.36 | 253.08 | 191.16 | 253.08 | 191.16 |
IGA-IIF | 25.08 | 5.16 | 225.72 | 417.96 | 225.72 | 417.96 |
IGA-NNISF | 26.12 | 16.94333 | 66.12 | 16.94333 | 235.08 | 1372.41 |
IGA-BPFIF | 9.96 | 4.04 | 55.04 | 28.12333 | 401.76 | 26,506.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Zhu, M.; Pan, W.; Liu, X. Interactive Genetic Algorithm Oriented toward the Novel Design of Traditional Patterns. Information 2019, 10, 36. https://doi.org/10.3390/info10020036
Lv J, Zhu M, Pan W, Liu X. Interactive Genetic Algorithm Oriented toward the Novel Design of Traditional Patterns. Information. 2019; 10(2):36. https://doi.org/10.3390/info10020036
Chicago/Turabian StyleLv, Jian, Miaomiao Zhu, Weijie Pan, and Xiang Liu. 2019. "Interactive Genetic Algorithm Oriented toward the Novel Design of Traditional Patterns" Information 10, no. 2: 36. https://doi.org/10.3390/info10020036
APA StyleLv, J., Zhu, M., Pan, W., & Liu, X. (2019). Interactive Genetic Algorithm Oriented toward the Novel Design of Traditional Patterns. Information, 10(2), 36. https://doi.org/10.3390/info10020036