An Intrusion Detection System Based on a Simplified Residual Network
Abstract
:1. Introduction
2. Related Works
3. Simplified Residual Network
4. Our Proposed IDS
4.1. Data Preprocessing
4.2. Random Oversampling
4.3. S-ResNet Layer
4.4. Dense Layer
4.5. Softmax Layer
5. Experiments and Results Analysis
5.1. Experimental Environment and Dataset
5.2. Experimental Performance Evaluation
5.3. Experimental Results and Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xin, Y.; Kong, L.S.; Liu, Z.; Chen, Y.L. Machine learning and deep learning methods for cybersecurity. IEEE Access 2018, 6, 35365–35381. [Google Scholar] [CrossRef]
- Ambusaidi, M.A.; He, X.J.; Nanda, P.; Tan, Z.Y. Building an intrusion detection system using a filter-based feature selection algorithm. IEEE Trans. Comput. 2016, 65, 2986–2998. [Google Scholar] [CrossRef]
- Ghazy, R.A.; El-Rabaie, E.M.; Dessouky, M.I.; El-Fishawy, N.A.; Abd El-Samie, F.E. Efficient techniques for attack detection using different features selection algorithms and classifiers. Wirel. Pers. Commun. 2018, 100, 1689–1706. [Google Scholar] [CrossRef]
- Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. J. Comput. Sci. 2018, 25, 152–160. [Google Scholar] [CrossRef]
- Kang, S.H.; Kim, K.J. A feature selection approach to find optimal feature subsets for the network intrusion detection system. Cluster Comput. 2016, 19, 325–333. [Google Scholar] [CrossRef]
- Salo, F.; Nassif, A.B.; Essex, A. Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection. Comput. Netw. 2019, 148, 164–175. [Google Scholar] [CrossRef]
- Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6. [Google Scholar]
- Beulah, J.R.; Punithavathani, D.S. A hybrid feature selection method for improved detection of wired/wireless network intrusions. Wirel. Pers. Commun. 2018, 98, 1853–1869. [Google Scholar] [CrossRef]
- Bostani, H.; Sheikhan, M. Hybrid of binary gravitational search algorithm and mutual information for feature selection in intrusion detection systems. Soft Comput. 2017, 21, 2307–2324. [Google Scholar] [CrossRef]
- Acharya, N.; Singh, S. An IWD-based feature selection method for intrusion detection system. Soft Comput. 2017, 22, 4407–4416. [Google Scholar] [CrossRef]
- KDD Cup99. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 17 October 2019).
- Akashdeep, S.; Manzoor, I.; Kumar, N. A feature reduced intrusion detection system using ANN classifier. Expert Syst. Appl. 2017, 88, 249–257. [Google Scholar] [CrossRef]
- Akyol, A.; Hacibeyoglu, M.; Karlik, B. Design of multilevel hybrid classifier with variant feature sets for intrusion detection system. IEICE Trans. Inf. Syst. 2016, ED99, 1810–1821. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Selvakumar, S. LAWRA: A layered wrapper feature selection approach for network attack detection. Secur. Commun. Netw. 2015, 8, 3459–3468. [Google Scholar] [CrossRef]
- Panda, M.; Abraham, A.; Patra, M.R. Hybrid intelligent systems for detecting network intrusions. Secur. Commun. Netw. 2015, 8, 2741–2749. [Google Scholar] [CrossRef]
- Ahmad, I.; Basheri, M.; Iqbal, M.J.; Rahim, A. Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 2018, 6, 33789–33795. [Google Scholar] [CrossRef]
- Aburomman, A.A.; Reaz, M.B. A survey of intrusion detection systems based on ensemble and hybrid classifiers. Comput. Secur. 2017, 65, 135–152. [Google Scholar] [CrossRef]
- Lilakiatsakun, W.; Somwang, P. Anomaly traffic detection based on PCA and SFAM. Int. Arab J. Inf. Technol. 2013, 12, 253–260. [Google Scholar]
- Alabdallah, A.; Awad, M. Using weighted support vector machine to address the imbalanced classes problem of intrusion detection system. KSII Trans. Internet Inf. Syst. 2018, 12, 5143–5158. [Google Scholar]
- Li, L.J.; Yu, Y.; Bai, S.S.; Hou, Y.; Chen, X.Y. An effective two-step intrusion detection approach based on binary classification and kNN. IEEE Access 2018, 6, 12060–12073. [Google Scholar] [CrossRef]
- Demir, N.; Dalkilic, G. Modified stacking ensemble approach to detect network intrusion. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 418–433. [Google Scholar] [CrossRef]
- Kamarudin, M.H.; Maple, C.; Watson, T.; Safa, N.S. A LogitBoost-based algorithm for detecting known and unknown web attacks. IEEE Access 2017, 5, 26190–26200. [Google Scholar] [CrossRef]
- Tian, Y.J.; Mirzabagheri, M.; Bamakan, S.M.H.; Wang, H.D.; Qu, Q. Ramp loss one-class support vector machine: A robust and effective approach to anomaly detection problems. Neurocomputing 2018, 310, 223–235. [Google Scholar] [CrossRef]
- Kabir, E.; Hu, J.K.; Wang, H.; Zhuo, G.P. A novel statistical technique for intrusion detection systems. Future Gener. Comput. Syst. 2018, 79, 303–318. [Google Scholar] [CrossRef]
- Ahmim, A.; Derdour, M.; Ferrag, M.A. An intrusion detection system based on combining probability predictions of a tree of classifiers. Int. J. Commun. Syst. 2018, 31, 1–14. [Google Scholar] [CrossRef]
- Aburomman, A.A.; Reaz, M.B. A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems. Inf. Sci. 2017, 414, 225–246. [Google Scholar] [CrossRef]
- Yan, B.H.; Han, G.D. LA-GRU: Building combined intrusion detection model based on imbalanced learning and gated recurrent unit neural network. Secur. Commun. Netw. 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Idhammad, M.; Afdel, K.; Belouch, M. Semi-supervised machine learning approach for DDoS detection. Appl. Intell. 2018, 48, 3193–3208. [Google Scholar] [CrossRef]
- Mohammadi, S.; Namadchian, A. A new deep learning approach for anomaly base IDS using memetic classifier. Int. J. Comput. Commun. 2017, 12, 677–688. [Google Scholar] [CrossRef]
- Imamverdiyev, Y.; Abdullayeva, F. Deep learning method for denial of service attack detection based on restricted boltzmann machine. Big Data-US 2018, 6, 159–169. [Google Scholar] [CrossRef]
- Ma, T.; Wang, F.; Cheng, J.; Yu, Y.; Chen, X. A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors (Basel) 2016, 16, 1701. [Google Scholar] [CrossRef]
- Shamshirband, S.; Daghighi, B.; Anuar, N.B.; Kiah, M.L.M.; Patel, A.; Abraham, A. Co-FQL: Anomaly detection using cooperative fuzzy Q-learning in network. J. Intell. Fuzzy Syst. 2015, 28, 1345–1357. [Google Scholar]
- Al-Qatf, M.; Yu, L.S.; Al-Habib, M.; Al-Sabahi, K. Deep learning approach combining sparse autoencoder with SVM for network intrusion detection. IEEE Access 2018, 6, 52843–52856. [Google Scholar] [CrossRef]
- Hussain, J.; Lalmuanawma, S.; Chhakchhuak, L. A two-stage hybrid classification technique for network intrusion detection system. Int. J. Comput. Int. Syst. 2016, 9, 863–875. [Google Scholar] [CrossRef]
- Li, L.J.; Yu, Y.; Bai, S.S.; Cheng, J.J.; Chen, X.Y. Towards effective network intrusion detection: A hybrid model integrating Gini index and GBDT with PSO. J. Sens. 2018, 6, 1–9. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), PIEAS, Islamabad, Pakistan, 26–27 August 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2014, 115, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. Comput. Sci. 2014, 9, 1–14. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Jian, S. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1–11. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the 2014 European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2015; pp. 630–645. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2011, 16, 321–357. [Google Scholar] [CrossRef]
- Wu, K.H.; Chen, Z.G.; Li, W. A novel intrusion detection model for a massive network using convolutional neural networks. IEEE Access 2018, 6, 50850–50859. [Google Scholar] [CrossRef]
- Le, T.T.H.; Kim, Y.; Kim, H. Network intrusion detection based on novel feature selection model and various recurrent neural networks. Appl. Sci.-Basel 2019, 9, 1392. [Google Scholar] [CrossRef] [Green Version]
- Panda, M.; Abraham, A.; Patra, M.R. Discriminative multinomial naive Bayes for network intrusion detection. In Proceedings of the 2010 Sixth International Conference on Information Assurance and Security, Atlanta, GA, USA, 23–25 August 2010; pp. 5–10. [Google Scholar]
- Salama, M.A.; Eid, H.F.; Ramadan, R.A.; Darwish, A.; Hassanien, A.E. Hybrid intelligent intrusion detection scheme. Soft Comput. Ind. Appl. 2011, 96, 293–303. [Google Scholar]
- Gogoi, P.; Bhuyan, M.H.; Bhattacharyya, D.; Kalita, J.K. Packet and flow based network intrusion dataset. Contemp. Comput. 2012, 306, 322–334. [Google Scholar]
- Yin, C.; Zhu, Y.; Fei, J.; He, X. A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 2017, 5, 21954–21961. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, H.; Singla, R.K. An intrusion detection system using network traffic profiling and online sequential extreme learning machine. Expert Syst. Appl. 2015, 42, 8609–8624. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Zheng, K.F.; Wu, C.H.; Niu, X.X.; Yang, Y.X. Building an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networks. Appl. Sci.-Basel 2019, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Kayacik, H.G.; Zincir-Heywood, A.N.; Heywood, M.I. Ahierarchical SOM-based intrusion detection system. Eng. Appl. Artif. Intell. 2007, 20, 439–451. [Google Scholar] [CrossRef]
- Tsang, C.H.; Kwong, S.; Wang, H. Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit. 2007, 40, 2373–2391. [Google Scholar] [CrossRef]
- Bamakan, S.M.H.; Wang, H.; Yingjie, T.; Shi, Y. An effective intrusion detection framework based on MCLP/SVM optimized by timevarying chaos particle swarm optimization. Neurocomputing 2016, 199, 90–102. [Google Scholar] [CrossRef]
Attack Category | Attack Types |
---|---|
DoS | apache2, back, land, mailbomb, Neptune, pod, processtable, smurf, teardrop, and udpstorm. |
Probe | Ipsweep, portsweep, mscan, nmap, saint, and satan. |
U2R | buffer_overflow, loadmodule, httptunnel, perl, ps, sqlattack, rootkit, and xterm. |
R2L | ftp_write, guess_passwd, phf, imap, multihop, named, sendmail, snmpgetattack, snmpguess, spy, warezclient, warezmaster, worm, xlock, and xsnoop. |
Predicted Positive Class | Predicted Negative Class | |
---|---|---|
Actual positive class | True Positive (TP) | False Negative (FN) |
Actual negative class | False Positive (FP) | Ture Negative (TN) |
IDS. | Accuracy (%) | Recall | F1-Score |
---|---|---|---|
The IDS based on the S-ResNet | 99.529 | 0.99529 | 0.99541 |
The equal scale ResNet-based IDS | 98.765 | 0.98764 | 0.98857 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Xiao, X. An Intrusion Detection System Based on a Simplified Residual Network. Information 2019, 10, 356. https://doi.org/10.3390/info10110356
Xiao Y, Xiao X. An Intrusion Detection System Based on a Simplified Residual Network. Information. 2019; 10(11):356. https://doi.org/10.3390/info10110356
Chicago/Turabian StyleXiao, Yuelei, and Xing Xiao. 2019. "An Intrusion Detection System Based on a Simplified Residual Network" Information 10, no. 11: 356. https://doi.org/10.3390/info10110356
APA StyleXiao, Y., & Xiao, X. (2019). An Intrusion Detection System Based on a Simplified Residual Network. Information, 10(11), 356. https://doi.org/10.3390/info10110356