Electrochemical Sensor for Explosives Precursors’ Detection in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Working Electrode Modification
2.2.2. Electrochemical Measurements
2.2.3. Electrochemical Data Analysis
- Sensitivity (SENS): the percentage of objects of each modelled class correctly accepted by the class model.
- Specificity (SPEC): the percentage of objects of the other classes correctly rejected by the class model.
- Efficiency (EFF): the geometric mean of sensitivity and specificity.
2.2.4. Operational Setup
- A wetting system fitting the sewage system and in which the eight-electrode array is inserted (Figure 2B). This setup enabled the electrode array to be immersed in flushing water.
3. Results and Discussion
3.1. Electrodeposition
3.2. Signature Definition and Data Analysis
3.3. Explosive Precursors’ Detection Using Pattern Recognition
3.4. Realistic Conditions Testing
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Regulation (EU) No 98/2013 of the European Parliament and of the Council of 15 January 2013 on the Marketing and Use of Explosives Precursors Text with EEA Relevance. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2013.039.01.0001.01.ENG (accessed on 11 Octorber 2013).
- King, J.D.; de los Santos, A. Development and evaluation of magnetic resonance technologies, particularly NMR, for detection of explosives. Appl. Magn. Reson. 2004, 25, 535–565. [Google Scholar] [CrossRef]
- Barras, J.; Gaskell, M.J.; Hunt, N.; Jenkinson, R.I.; Mann, K.R.; Pedder, D.A.G.; Shilstone, G.N.; Smith, J.A.S. Detection of ammonium nitrate inside vehicles by nuclear quadrupole resonance. Appl. Magn. Reson. 2004, 25, 411–437. [Google Scholar] [CrossRef]
- Moros, J.; Lorenzo, J.A.; Lucena, P.; Tobaria, L.M.; Laserna, J.J. Simultaneous raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Anal. Chem. 2010, 82, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, M.L.; Félix-Rivera, H.; Sánchez-Cuprill, R.A.; Hernández-Rivera, S.P. Thermal-spectroscopic characterization of acetone peroxide and acetone peroxide mixtures with nitrocompounds. J. Therm. Anal. Calorim. 2010, 102, 549–555. [Google Scholar] [CrossRef]
- Cheng, S.; Dou, J.; Wang, W.; Chen, C.; Hua, L.; Zhou, Q.; Hou, K.; Li, J.; Li, H. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives. Anal. Chem. 2012, 85, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Östmark, H.; Nordberg, M.; Carlsson, T.E. Stand-off detection of explosives particles by multispectral imaging Raman spectroscopy. Appl. Opt. 2011, 50, 5592–5599. [Google Scholar] [CrossRef] [PubMed]
- Johns, C.; Shellie, R.A.; Potter, O.G.; O’Reilly, J.W.; Hutchinson, J.P.; Guijt, R.M.; Breadmore, M.C.; Hilder, E.F.; Dicinoski, G.W.; Haddad, P.R. Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues. J. Chromatogr. 2008, 1182, 205–214. [Google Scholar]
- Hopper, K.G.; LeClair, H.; McCord, B.R. A novel method for analysis of explosives residue by simultaneous detection of anions and cations via capillary zone electrophoresis. Talanta 2005, 67, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Hakonen, A.; Andersson, P.O.; Schmidt, M.S.; Rindzevicius, T.; Käll, M. Explosive and chemical threat detection by surface-enhanced Raman scattering: A review. Anal. Chim. Acta 2015, 893, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Apodaca, C.D.; Pernites, R.B.; del Mundo, F.R.; Advincula, R.C. Detection of 2,4-dinitrotoluene (DNT) as a model system for nitroaromatic compounds via molecularly imprinted short-alkyl-chain SAMs. Langmuir 2011, 27, 6768–6779. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Microchip devices for detecting terrorist weapons. Anal. Chim. Acta 2004, 507, 3–10. [Google Scholar] [CrossRef]
- Singh, S. Sensors—An effective approach for the detection of explosives. J. Hazard. Mater. 2007, 144, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Y.; Huang, X.; Zhu, Z. Tin oxide nanorod array-based electrochemical hydrogen peroxide biosensor. Nanoscale Res. Lett. 2010, 5, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, A.; Mathies, R.A. Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip. Anal. Chem. 2003, 75, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Charles, P.T.; Adams, A.A.; Howell, P.B.; Trammell, S.A.; Deschamps, J.R.; Kusterbeck, A.W. Fluorescence-based sensing of 2,4,6-trinitrotoluene (TNT) using a multi-channeled poly(methyl methacrylate) (PMMA) microimmunosensor. Sensors 2010, 10, 876–889. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Electrochemical sensing of explosives. Electroanalysis 2007, 19, 415–423. [Google Scholar] [CrossRef]
- Chen, W.; Cai, S.; Ren, Q.; Wen, W.; Zhao, Y. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liang, Y.; Zhou, T.; Shi, G.; Jin, L. TNT determination based on its degradation by immobilized HRP with electrochemical sensor. Electrochem. Commun. 2008, 10, 1176–1179. [Google Scholar] [CrossRef]
- Corgier, B.P.; Li, F.; Blum, L.J.; A, C. On-chip chemiluminescent signal enhancement using nanostructured gold-modified carbon microarrays. Langmuir 2007, 23, 8619–8623. [Google Scholar] [CrossRef] [PubMed]
- Barker, M.; Rayens, W.S. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Ferrari, C.; Ulrici, A.; Romolo, F. Expert system for bomb factory detection by networks of advance sensors. Challenges 2017, 8, 1. [Google Scholar] [CrossRef]
- Chandler, G.K.; Genders, J.D.; Pletcher, D. Electrodes based on noble metals. Platin. Met. Rev. 1997, 41, 54–63. [Google Scholar]
Target | Class | Number of Spectra for Training | Number of Spectra for Test | Total Number of Spectra |
---|---|---|---|---|
B01 | Target | 25 | 11 | 36 |
No Target | 187 | 122 | 309 | |
B08 | Target | 33 | 22 | 55 |
No Target | 179 | 111 | 290 | |
B15 | Target | 33 | 21 | 54 |
No Target | 179 | 112 | 291 |
PLS-DA Cycle | Spectra Pre-Treatment Method |
---|---|
1 | None |
2 | Mean centre (MC) |
3 | Auto-scale (Auto) |
4 | Standard normal variate (SNV) |
5 | Standard normal variate (SNV) + MC |
6 | Standard normal variate (SNV) + Auto |
Target | Efficiency (%) | ||
---|---|---|---|
Cal. (Calibration) | CV (Cross-Validation) | Pred. (Prediction) | |
B01 | 100.00 | 100.00 | 95.34 |
B08 | 100.00 | 92.15 | 99.55 |
B15 | 100.00 | 97.65 | 100.00 |
Test Number | Target | Predicted Probability (%) | ||
---|---|---|---|---|
B01 | B08 | B15 | ||
1 | B15 | 0.00 | 0.00 | 100.00 |
B01 | 100.00 | 0.00 | 0.00 | |
2 | B08 | 0.00 | 93.84 | 0.00 |
3 | B01 | 100.00 | 100.00 | 0.00 |
4 | B15 | 0.00 | 0.00 | 100.00 |
5 | B01 | 100.00 | 92.44 | 0.00 |
6 | B15 | 0.00 | 0.00 | 100.00 |
7 | Blank | 0.00 | 0.31 | 0.00 |
8 | Blank | 0.00 | 0.31 | 0.00 |
9 | B15 | 0.00 | 0.00 | 100.00 |
10 | B08 | 28.35 | 99.88 | 0.00 |
11 | Blank | 0.00 | 0.16 | 0.00 |
12 | B15 | 0.00 | 0.00 | 100.00 |
13 | B01 | 100.00 | 100.00 | 0.00 |
14 | Blank | 0.00 | 0.66 | 0.82 |
15 | B08 | 0.00 | 99.66 | 0.00 |
16 | Blank | 0.00 | 0.67 | 0.00 |
17 | B08 | 0.00 | 93.10 | 0.00 |
18 | B08 | 0.00 | 93.84 | 0.00 |
19 | Blank | 0.00 | 0.31 | 0.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desmet, C.; Degiuli, A.; Ferrari, C.; Romolo, F.S.; Blum, L.; Marquette, C. Electrochemical Sensor for Explosives Precursors’ Detection in Water. Challenges 2017, 8, 10. https://doi.org/10.3390/challe8010010
Desmet C, Degiuli A, Ferrari C, Romolo FS, Blum L, Marquette C. Electrochemical Sensor for Explosives Precursors’ Detection in Water. Challenges. 2017; 8(1):10. https://doi.org/10.3390/challe8010010
Chicago/Turabian StyleDesmet, Cloé, Agnes Degiuli, Carlotta Ferrari, Francesco Saverio Romolo, Loïc Blum, and Christophe Marquette. 2017. "Electrochemical Sensor for Explosives Precursors’ Detection in Water" Challenges 8, no. 1: 10. https://doi.org/10.3390/challe8010010
APA StyleDesmet, C., Degiuli, A., Ferrari, C., Romolo, F. S., Blum, L., & Marquette, C. (2017). Electrochemical Sensor for Explosives Precursors’ Detection in Water. Challenges, 8(1), 10. https://doi.org/10.3390/challe8010010