5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System
Abstract
:1. Introduction
- i- In situ extraction of 5-HMF from the reaction media to avoid its successive transformation. This was done using a 5-HMF extractive solvent, immiscible in water [6,7,8,9]. However, the use of large volumes of solvent could be a serious drawback for further industrial applications. On the other hand, 5-HMF separation from the aqueous media was also reported via steam extraction [10]. One can also mention that the continuous water extraction from the reaction media favors 5-HMF yield [7].
- ii- An alternative solution is to perform the reaction in organic/aqueous media or in pure organic solvent. DMSO (Dimethylsulfoxide) is the usual organic solvent for the 5-HMF synthesis. If the glucose dehydration in 5-HMF in pure water is not selective, in DMSO, higher yields (42%) were reported [9].
- iii-Ionic liquids are being increasingly investigated to synthesize 5-HMF. In 2006, Moreau et al. [11] reported the efficient dehydration of fructose into 5-HMF in an ionic liquid, 1-H,3-methyl imidazolium chloride. Using diethyl ether to recover 5-HMF, a yield of 85% was reported after a few minutes of reaction time at 90 °C.
2. Results and Discussion
2.1. Pure Hot Water as Reaction Medium
2.2. Concentrated Aqueous Organic Acids Solutions as Reaction Medium
3. Experimental Section
4. Conclusions
Acknowledgments
References and Notes
- Bicker, M.; Hirth, J.; Vogel, H. Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone. Green Chem. 2003, 5, 280–284. [Google Scholar] [CrossRef]
- Rosatella, A.A.; Simeonov, S.P.; Frade, R.F.M.; Afonso, C.A.M. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem. 2011, 13, 754–793. [Google Scholar] [CrossRef]
- Stahlberg, T.; Fu, W.; Woodley, J.M.; Riisager, A. Synthesis of 5-(Hydroxymethyl)furfural in Ionic Liquids: Paving the way to renewable chemicals. ChemSusChem 2011, 4, 451–458. [Google Scholar] [CrossRef]
- Tong, X.; Ma, Y.; Li, Y. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Appl. Cata. A 2010, 385, 1–13. [Google Scholar] [CrossRef]
- Vigier, K.; Jerome, F. Heterogeneously-catalyzed conversion of carbohydrates. Top. Curr. Chem. 2010, 255, 63–92. [Google Scholar] [CrossRef]
- Lightner, G.E. U.S. Pat. US 20020123636 A1 20020905, 2002.
- Sanborn, A.J.; Bloom, P.D. US 7393963 B2 20080701, 2008.
- Gaset, A.; Rigal, L.; Paillassa, G.; Salome, J.-P.; Fleche, G. FR 2551754 A1 19850315, 1985.
- Chheda, J.N.; Dumesic, J.A. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal. Today 2007, 123, 59–70. [Google Scholar]
- Watanabe, M.; Aizawa, Y.; Iida, T.; Nishimura, R.; Inomata, H. Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473K: Relationship between reactivity and acid-base property determined by TPD measurement. Appl. Catal. A 2005, 295, 150–156. [Google Scholar] [CrossRef]
- Moreau, C.; Finiels, A.; Vanoye, L. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst. J. Mol. Catal. A 2006, 253, 165–169. [Google Scholar] [CrossRef]
- Zhao, H.; Holladay, J.E.; Brown, H.; Zhang, Z.C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 2007, 316, 1597–1600. [Google Scholar] [CrossRef]
- Pidko, E.A.; Degirmenci, V.; van Santen, R.A.; Hensen, E.J.M. Glucose activation by transient Cr2+ dimers. Angew. Chem. Int. Ed. 2010, 49, 2530–2534. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, Z.; Song, J.; Zhou, Y.; Han, B. Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem. 2009, 11, 1746–1749. [Google Scholar] [CrossRef]
- Mittal, N.; Nisole, G.M.; Chung, W.J. Facile catalytic dehydration of fructose to 5-hydroxymethylfurfural by Niobium pentachloride. Tetrahedron 2012, 53, 3149–3155. [Google Scholar] [CrossRef]
- Kuster, B.F.M.; Temmink, H.M.G. The dehydration of D-fructose (formation of 5-hydroxymethyl-2-furaldehyde and levulinic acid): Part IV. The influence of pH and weak-acid anions on the dehydration of D-fructose. Carbohydr. Res. 1977, 54, 185–191. [Google Scholar]
- Armaroli, T.; Busca, G.; Carlini, C.; Giuttari, M.; Raspolli Galletti, A.M.; Sbrana, G. Acid site characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J. Mol. Catal. A 2000, 151, 233–243. [Google Scholar] [CrossRef]
- Carlini, C.; Patrono, P.; Raspolli Galletti, A.M.; Sbrana, G. Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Appl. Catal. A 2004, 275, 111–118. [Google Scholar] [CrossRef]
- Benvenuti, F.; Carlini, C.; Patrono, P.; Raspolli Galletti, A.M.; Sbrana, G.; Massucci, M.A.; Galli, P. Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates. Appl. Catal. A 2000, 193, 147–153. [Google Scholar] [CrossRef]
- Hansen, T.S.; Mielby, J.; Riisager, A. Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green Chem. 2011, 13, 109–114. [Google Scholar] [CrossRef]
- Kitano, M.; Nakajima, K.; Kondo, J.N.; Hayashi, S.; Hara, M. Protonated titanate nanotubes as solid acid catalyst. J. Am. Chem. Soc. 2010, 132, 6622–6623. [Google Scholar] [CrossRef]
- Nakajima, K.; Baba, Y.; Noma, R.; Kitano, M.; Kondo, J. N.; Hayashi, S.; Hara, M. Nb2O5·nH2O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites. J. Am. Chem. Soc. 2011, 133, 4224–4227. [Google Scholar] [CrossRef]
- Dutta, S.; de, S.; Patra, A.K.; Sasidharan, M.; Bhaumik, A.; Saha, B. Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles. Appl. Catal. A 2011, 409–410, 133–139. [Google Scholar]
- Yang, F.; Liu, Q.; Min, Y.; Bai, X.; Du, Y. Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Chem. Commun. 2011, 47, 4469–4471. [Google Scholar]
- Roman-Leshkov, Y.; Moliner, M.; Labinger, J.A.; Davis, M.E. Mechanism of glucose isomerization using a solid lewis acid catalyst in water. Angew. Chem. Int. Ed. 2010, 49, 8954–8957. [Google Scholar] [CrossRef]
- Jensen, V.J.; Rugh, S. Industrial-scale production and application of immobilized glucose isomerase. Methods Enzymol. 1987, 136, 356–370. [Google Scholar] [CrossRef]
- Buchholz, K.; Seibel, J. Industrial carbohydrate biotransformations. Carbohydr. Res. 2008, 343, 1966–1979. [Google Scholar] [CrossRef]
- Lobry de Bruyn, C.A.; Alberda van Ekenstein, W. Action of alkalis on the sugars. Reciprocal transformation of glucose, fructose, and mannose. Recueil des Travaux Chimiques des Pays-Bas 1985, 14, 201–216. [Google Scholar]
- Lima, S.; Dias, A.S.; Lin, Z.; Brandao, P.; Ferreira, P.; Pillinger, M.; Rocha, J.; Calvino-Casilda, V.; Valente, A.A. Isomerization of D-glucose to D-fructose over metallosilicate solid bases. Appl. Catal. A 2008, 339, 21–27. [Google Scholar] [CrossRef]
- Cornille, F. FR 2862973 A1 20050603, 2005.
- Moreau, C.; Durand, R.; Roux, A.; Tichit, D. Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites. Appl. Catal. A 2000, 193, 257–264. [Google Scholar] [CrossRef]
- Souza, R.O.L.; Patrick, D.F.; Feche, C.; Cardoso, D.; Rataboul, F.; Essayem, N. Glucose–fructose isomerization promoted by basic hybrid catalysts. Catal. Today 2012. In Press. [Google Scholar] [CrossRef]
- Moreau, C.; Lecomte, J.; Roux, A. Determination of the basic strength of solid catalysts in water by means of a kinetic tracer. Catal. Commun. 2006, 7, 941–944. [Google Scholar]
- Ohara, M.; Takagaki, A.; Nishimura, S.; Ebitani, K. Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Appl. Catal. A 2010, 383, 149–155. [Google Scholar] [CrossRef]
- Avignon, G.; Durand, R.; Faugeras, P.; Geneste, P.; Moreau, C.; Rivalier, P.; Ros, P. FR 2670209 A1 19920612, 1992.
- Carlini, C.; Giuttari, M.; Raspolli Galletti, A.M.; Sbrana, G.; Armaroli, T.; Busca, G. Selective saccharide dehydration to 5-(hydroxymethyl)-2-furaldehyde by heterogeneous niobium catalysts. Appl. Catal. A 1999, 183, 295–302. [Google Scholar] [CrossRef]
- Carlini, C.; Patrono, P.; Raspolli Galletti, A.M.; Sbrana, G. Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Appl. Catal. A 2004, 275, 111–118. [Google Scholar] [CrossRef]
- Carniti, P.; Gervasini, A.; Biella, S.; Auroux, A. Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: Fructose dehydration reaction. Catal. Today 2006, 118, 373–378. [Google Scholar] [CrossRef]
- Qi, X.; Watanabe, M.; Aida, T.M.; Smith, R.L., Jr. Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal. Commun. 2008, 9, 2244–2249. [Google Scholar] [CrossRef]
- Chambon, F.; Rataboul, F.; Pinel, C.; Cabiac, A.; Guillon, E.; Essayem, N. Cellulose hydrothermal conversion promoted by heterogeneous Bronsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Appl. Catal. B 2011, 105, 171–181. [Google Scholar] [CrossRef]
- Desmartin-Chomel, A.; Hamad, B.; Palomeque, J.; Essayem, N.; Bergeret, G.; Figueras, F. Basic properties of MgLaO mixed oxides as determined by microcalorimetry and kinetics. Catal. Today 2010, 152, 110–114. [Google Scholar] [CrossRef]
- Essayem, N.; Lopes de Souza, R.; Rataboul, F.; Patrick, D.F.; Feche, C.; Cardoso, D. FR 1157575 11, 2011.
- Carniti, P.; Gervasini, A.; Marzo, M. Absence of expected side-reactions in the dehydration reaction of fructose to HMF in water over niobic acid catalyst. Catal. Commun. 2011. [Google Scholar] [CrossRef]
- Antal, M.J., Jr.; Mok, W.S.L.; Richards, G.N. Kinetic studies of the reactions of ketoses and aldoses in water at high temperature. 1. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. Carbohydr. Res. 1990, 199, 91–109. [Google Scholar]
- Garber, J.D.; Jones, R.E. US 2929823 19600322, 1960.
- Essayem, N.; Lopes de Souza, R.; Rataboul, F. FR 11/54232.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
De Souza, R.L.; Yu, H.; Rataboul, F.; Essayem, N. 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System. Challenges 2012, 3, 212-232. https://doi.org/10.3390/challe3020212
De Souza RL, Yu H, Rataboul F, Essayem N. 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System. Challenges. 2012; 3(2):212-232. https://doi.org/10.3390/challe3020212
Chicago/Turabian StyleDe Souza, Rodrigo Lopes, Hao Yu, Franck Rataboul, and Nadine Essayem. 2012. "5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System" Challenges 3, no. 2: 212-232. https://doi.org/10.3390/challe3020212
APA StyleDe Souza, R. L., Yu, H., Rataboul, F., & Essayem, N. (2012). 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System. Challenges, 3(2), 212-232. https://doi.org/10.3390/challe3020212